E·XFL

Zilog - ZGP323LEH2008C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323leh2008c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Z8 GPTM OTP MCU Family Product Specification

List of Tables

Table 1.	Features
Table 2.	Power Connections
Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification
Table 4.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification
Table 5.	40- and 48-Pin Configuration 8
Table 6.	Absolute Maximum Ratings 10
Table 7.	Capacitance
Table 8.	DC Characteristics 11
Table 9.	EPROM/OTP Characteristics 13
Table 10.	AC Characteristics 15
Table 11.	Port 3 Pin Function Summary 21
Table 12.	CTR0(D)00H Counter/Timer8 Control Register 31
Table 13.	CTR1(0D)01H T8 and T16 Common Functions
Table 14.	CTR2(D)02H: Counter/Timer16 Control Register
Table 15.	CTR3 (D)03H: T8/T16 Control Register
Table 16.	Interrupt Types, Sources, and Vectors
Table 17.	IRQ Register 50
Table 18.	SMR2(F)0DH:Stop Mode Recovery Register 2* 56
Table 19.	Stop Mode Recovery Source 58
Table 20.	Watch-Dog Timer Time Select 61
Table 21.	EPROM Selectable Options 62

			T _A =0°C to +70°C 8.0MHz				Watch-Dog Timer	
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	[−] Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3	
		Spec		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watch-Dog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-On Reset	2.0–3.6	2.5	10	ms		

Table 10. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

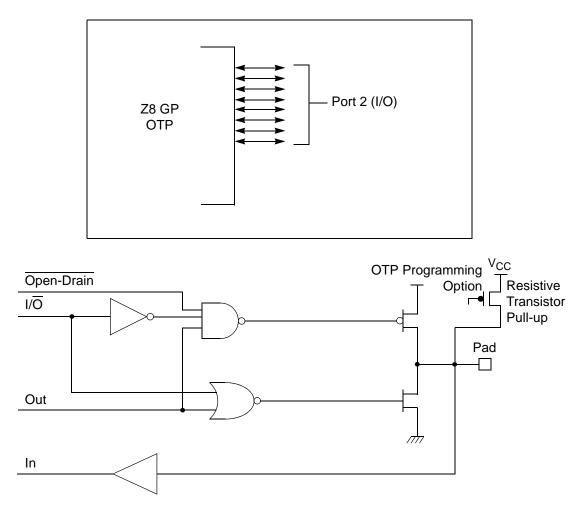


Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

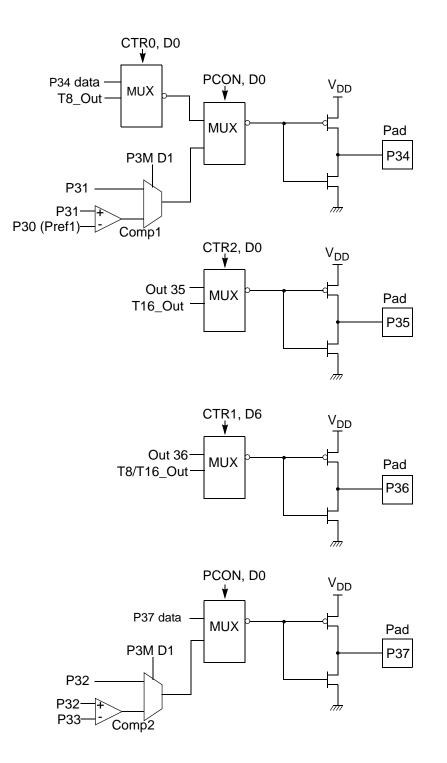
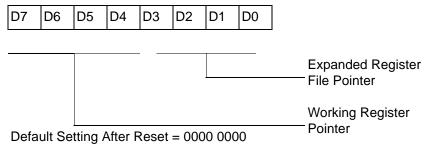


Figure 13. Port 3 Counter/Timer Output Configuration

Z8 GP[™] OTP MCU Family Product Specification

Location of 32768	Not Accessible
first Byte of	On-Chip
instruction	ROM
executed	
after RESET	Reset Start Address
11	IRQ5
10	IRQ5
9	IRQ4
8	IRQ4
7	IRQ3
Interrupt Vector (Lower Byte) 6	IRQ3
5	IRQ2
4	IRQ2
(Upper Byte) 3	IRQ1
2	IRQ1
1	IRQ0
0	IRQ0

Figure 14. Program Memory Map (32K OTP)


Expanded Register File

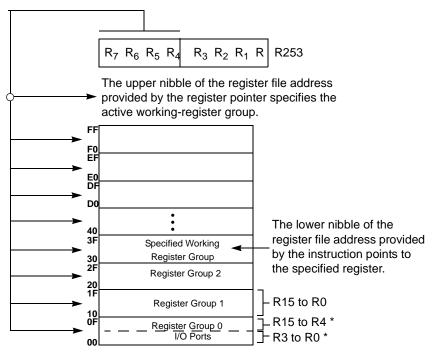
The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

27

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\rm H}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)


R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2R3 = Reserved

* RP = 00: Selects Register Bank 0, Working Register Group 0

Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

34

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset.

**Default at Power-On Reset.Not reset with Stop Mode recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

Z i L 0 G 36

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize Edge
Time_Out	5	R	0*	No Counter Timeout
			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0	Disable Timeout Int.
			1	Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Table 14. CTR2(D)02H: Counter/Timer16 Control Register

Note:

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset.Not reset with Stop Mode recovery.

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

ZILOG

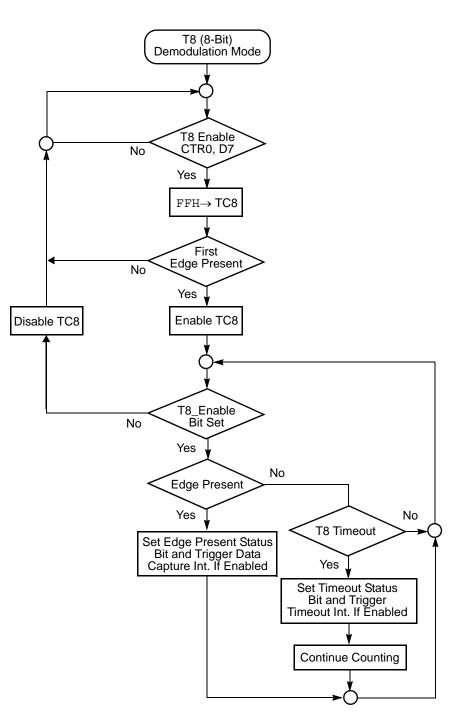


Figure 24. Demodulation Mode Flowchart

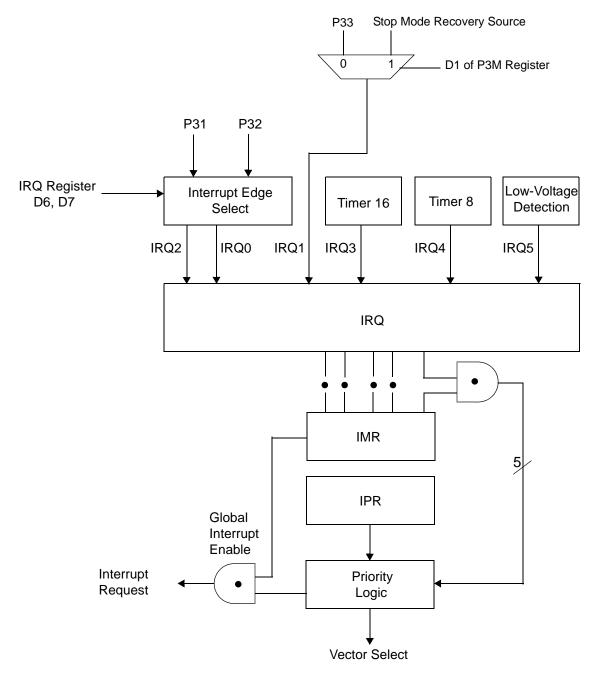


Figure 30. Interrupt Block Diagram

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-gate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address <code>0BH</code>.

Table 19. Stop Mode Recovery Source

SMR:432			Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

>

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

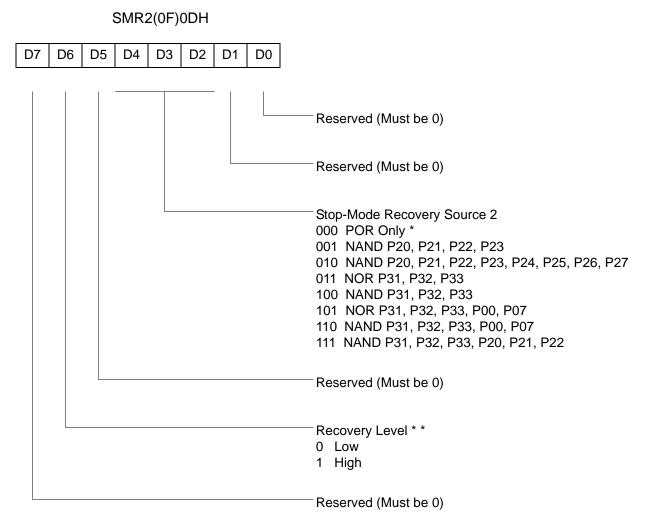
Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

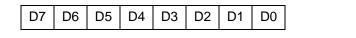
Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).


Z8 GP[™] OTP MCU Family Product Specification

CTR1(0D)01H D7 D6 D5 D3 D1 D0 D4 D2 Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially **Demodulation Mode** R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially **Demodulation Mode** R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 **Demodulation Mode** 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND **Demodulation Mode** 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT **Demodulation Mode** 0 P31 as Demodulator Input 1 P20 as Demodulator Input Transmit/Demodulation Mode 0 Transmit Mode * * Default setting after reset **Default setting after reset. Not reset with Stop Mode 1 Demodulation Mode recovery

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

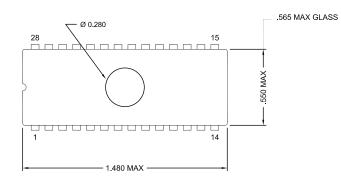

* Default setting after reset

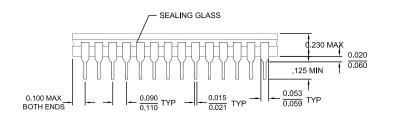
* * At the XOR gate input

R254 SPH(FEH)

General-Purpose Register

Figure 56. Stack Pointer High (FEH: Read/Write)


R255 SPL(FFH)


D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

Stack Pointer Low Byte (SP7–SP0)

Figure 57. Stack Pointer Low (FFH: Read/Write)

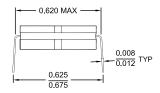


Figure 62. 28-Pin CDIP Package

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP
ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP
ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP
ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP

16KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description	
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP	
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP	
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP	
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP	
Note: Replace C with G for Lead-Free Packaging				

PS023702-1004

Z8 GP[™] OTP MCU Family Product Specification

D

DC characteristics 11 demodulation mode count capture flowchart 42 flowchart 43 T16 45 T8 41 description functional 23 general 2 pin 4

Ε

EPROM selectable options 62 expanded register file 24 expanded register file architecture 26 expanded register file control registers 69 flag 78 interrupt mask register 77 interrupt priority register 76 interrupt request register 77 port 0 and 1 mode register 75 port 2 configuration register 73 port 3 mode register 74 port configuration register 73 register pointer 78 stack pointer high register 79 stack pointer low register 79 stop-mode recovery register 71 stop-mode recovery register 2 72 T16 control register 67 T8 and T16 common control functions register 65 T8/T16 control register 68 TC8 control register 64 watch-dog timer register 73

F

features standby modes 1 functional description counter/timer functional blocks 38 CTR(D)01h register 33 CTR0(D)00h register 31 CTR2(D)02h register 35 CTR3(D)03h register 37 expanded register file 24 expanded register file architecture 26 HI16(D)09h register 30 HI8(D)0Bh register 30 L08(D)0Ah register 30 L0I6(D)08h register 30 program memory map 24 **RAM 23** register description 63 register file 28 register pointer 27 register pointer detail 29 SMR2(F)0D1h register 38 stack 29 TC16H(D)07h register 30 TC16L(D)06h register 31 TC8H(D)05h register 31 TC8L(D)04h register 31

G

glitch filter circuitry 38

Η

halt instruction, counter/timer 52

I

input circuit 38 interrupt block diagram, counter/timer 49 interrupt types, sources and vectors 50

L

low-voltage detection register 63