Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 24 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323leh2808c00tr | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Table of Contents** | Development Features | |--| | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions 10 | | DC Characteristics | | AC Characteristics | | Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23 | | Functional Description 23 Program Memory 23 RAM 23 Expanded Register File 24 Register File 28 Stack 29 Timers 30 Counter/Timer Functional Blocks 38 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) 69 | | Standard Control Registers | | Package Information | | Ordering Information | | Precharacterization Product 95 | # Z8 GPTM OTP MCU Family Product Specification | Figure 35. | Stop Mode Recovery Source | 57 | |------------|---|----| | Figure 36. | Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) . | 59 | | Figure 37. | Watch-Dog Timer Mode Register (Write Only) | 60 | | Figure 38. | Resets and WDT | 61 | | Figure 39. | TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) | 64 | | Figure 40. | T8 and T16 Common Control Functions ((0D)01H: Read/Write) | 65 | | Figure 41. | T16 Control Register ((0D) 2H: Read/Write Except Where Noted) . | 67 | | Figure 42. | T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted) | 68 | | Figure 43. | Voltage Detection Register | 69 | | Figure 44. | Port Configuration Register (PCON)(0F)00H: Write Only) | 70 | | Figure 45. | Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only) | 71 | | Figure 46. | Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only) | 72 | | Figure 47. | Watch-Dog Timer Register ((0F) 0FH: Write Only) | 73 | | Figure 48. | Port 2 Mode Register (F6H: Write Only) | 73 | | Figure 49. | Port 3 Mode Register (F7H: Write Only) | 74 | | Figure 50. | Port 0 and 1 Mode Register (F8H: Write Only) | 75 | | Figure 51. | Interrupt Priority Register (F9H: Write Only) | 76 | | Figure 52. | Interrupt Request Register (FAH: Read/Write) | 77 | | Figure 53. | Interrupt Mask Register (FBH: Read/Write) | 77 | | Figure 54. | Flag Register (FCH: Read/Write) | 78 | | Figure 55. | Register Pointer (FDH: Read/Write) | 78 | | Figure 56. | Stack Pointer High (FEH: Read/Write) | 79 | | Figure 57. | Stack Pointer Low (FFH: Read/Write) | 79 | | Figure 58. | 20-Pin CDIP Package | 80 | | Figure 59. | 20-Pin PDIP Package Diagram | 81 | | Figure 60. | 20-Pin SOIC Package Diagram | 81 | | Figure 61. | 20-Pin SSOP Package Diagram | 82 | | Figure 62. | 28-Pin CDIP Package | 83 | | Figure 63. | 28-Pin SOIC Package Diagram | 84 | | Figure 64. | 28-Pin PDIP Package Diagram | 85 | | Figure 65. | 28-Pin SSOP Package Diagram | 86 | | Figure 66. | 40-Pin CDIP Package | 87 | | Figure 67. | 40-Pin PDIP Package Diagram | 87 | | Figure 68. | 48-Pin SSOP Package Design | 88 | ## List of Tables | Table 1. | Features | 1 | |-----------|--|------------| | Table 2. | Power Connections | 3 | | Table 3. | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | 5 | | Table 4. | 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | 6 | | Table 5. | 40- and 48-Pin Configuration | 8 | | Table 6. | Absolute Maximum Ratings | C | | Table 7. | Capacitance | 1 | | Table 8. | DC Characteristics | 1 | | Table 9. | EPROM/OTP Characteristics | 3 | | Table 10. | AC Characteristics | 5 | | Table 11. | Port 3 Pin Function Summary | 1: | | Table 12. | CTR0(D)00H Counter/Timer8 Control Register | }1 | | Table 13. | CTR1(0D)01H T8 and T16 Common Functions 3 | 33 | | Table 14. | CTR2(D)02H: Counter/Timer16 Control Register 3 | 16 | | Table 15. | CTR3 (D)03H: T8/T16 Control Register 3 | 37 | | Table 16. | Interrupt Types, Sources, and Vectors | (| | Table 17. | IRQ Register 5 | 50 | | Table 18. | SMR2(F)0DH:Stop Mode Recovery Register 2* | 6 | | Table 19. | Stop Mode Recovery Source | 36 | | Table 20. | Watch-Dog Timer Time Select | i 1 | | Table 21 | FPROM Selectable Ontions 6 | 3 | Port 1: 0–3 pull-up transistors Port 1: 4–7 pull-up transistors Port 2: 0–7 pull-up transistors EPROM Protection WDT enabled at POR **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at V_{CC}=2 V. ## **General Description** The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors. The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications. There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D). To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages. Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low. Power connections use the conventional descriptions listed in Table 2. **Table 2. Power Connections** | Connection | Circuit | Device | |------------|-----------------|-----------------| | Power | V _{CC} | V_{DD} | | Ground | GND | V _{SS} | Note: Refer to the specific package for available pins. Figure 1. Functional Block Diagram Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | Pin | Symbol | Direction | Description | |-------|-----------------|--------------|--| | 1-3 | P25-P27 | Input/Output | Port 2, Bits 5,6,7 | | 4-7 | P04-P07 | Input/Output | Port 0, Bits 4,5,6,7 | | 8 | V_{DD} | | Power supply | | 9 | XTAL2 | Output | Crystal, oscillator clock | | 10 | XTAL1 | Input | Crystal, oscillator clock | | 11-13 | P31-P33 | Input | Port 3, Bits 1,2,3 | | 14 | P34 | Output | Port 3, Bit 4 | | 15 | P35 | Output | Port 3, Bit 5 | | 16 | P37 | Output | Port 3, Bit 7 | | 17 | P36 | Output | Port 3, Bit 6 | | 18 | Pref1/P30 | Input | Analog ref input; connect to V _{CC} if not used | | | Port 3 Bit 0 | | Input for Pref1/P30 | | 19-21 | P00-P02 | Input/Output | Port 0, Bits 0,1,2 | | 22 | V _{SS} | | Ground | | 23 | P03 | Input/Output | Port 0, Bit 3 | | 24-28 | P20-P24 | Input/Output | Port 2, Bits 0-4 | Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use. ## **Absolute Maximum Ratings** Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability. **Table 6. Absolute Maximum Ratings** | Parameter | Minimum | Maximum | Units | Notes | |--|------------|---------|-------|-------| | Ambient temperature under bias | 0 | +70 | С | | | Storage temperature | -65 | +150 | С | | | Voltage on any pin with respect to V _{SS} | -0.3 | +5.5 | V | 1 | | Voltage on V _{DD} pin with respect to V _{SS} | -0.3 | +3.6 | V | | | Maximum current on input and/or inactive output pin | - 5 | +5 | μA | | | Maximum output current from active output pin | -25 | +25 | mA | | | Maximum current into V _{DD} or out of V _{SS} | | 75 | mA | | Notes: This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET. #### **Standard Test Conditions** The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7). Figure 7. Test Load Diagram ### **XTAL1 Crystal 1 (Time-Based Input)** This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input. #### XTAL2 Crystal 2 (Time-Based Output) This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output. ## Port 0 (P07-P00) Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port. An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select. **Notes:** Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode. The Port 0 direction is reset to be input following an SMR. Figure 9. Port 0 Configuration ## Port 1 (P17-P10) Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register. **Note:** The Port 1 direction is reset to be input following an SMR. ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank. **Note:** An expanded register bank is also referred to as an expanded register group (see Figure 15). The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\mathrm{H}}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{1\mathrm{H}}$ to $_{\mathrm{FH}}$ exchanges the lower 16 registers to an expanded register bank. Figure 16. Register Pointer Example: Z8 GP: (See Figure 15 on page 26) R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3 But if: R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2 R3 = Reserved The counter/timers are mapped into ERF group D. Access is easily performed using the following: ``` RP, #0Dh T.D ; Select ERF D for access to bank D ; (working register group 0) R0,#xx LD ; load CTRL0 LD 1, #xx ; load CTRL1 LD R1, 2 ; CTRL2→CTRL1 LD RP, #0Dh ; Select ERF D for access to bank D ; (working register group 0) RP, #7Dh ; Select expanded register bank D and working ; register group 7 of bank 0 for access. 71h, 2 ; CTRL2→register 71h R1, 2 ; CTRL2\rightarrowregister 71h ``` ## **Register File** The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 12) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group. Note: Working register group E0–EF can only be accessed through working registers and indirect addressing modes. Figure 17. Register Pointer—Detail #### Stack The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register. #### If D6 of CTR2 Is 1 T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges. This T16 mode generally measures mark time, the length of an active carrier signal burst. If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1). #### **Ping-Pong Mode** This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28. **Note:** Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation. #### Low-Voltage Detection Register—LVD(D)0Ch **Note:** Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current. | Field | Bit Position | | | Description | |----------|--------------|-----|---------|--------------------------------| | LVD | 76543 | | | Reserved
No Effect | | | 2 | R | 1
0* | HVD flag set
HVD flag reset | | | 1- | R | 1
0* | LVD flag set
LVD flag reset | | | 0 | R/W | 1
0* | Enable VD
Disable VD | | *Default | after POR | | | | Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag. #### **Voltage Detection and Flags** The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only. Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection. Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions. > Changing from one mode to another cannot be performed without disabling the counter/timers. PCON(0F)00H ^{*} Default setting after reset Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only) ## **Package Information** Package information for all versions of Z8 GPTM OTP MCU Family are depicted in Figures 58 through Figure 68. Figure 58. 20-Pin CDIP Package Figure 61. 20-Pin SSOP Package Diagram | 4KB Standard Temperature: 0° to +70°C | | | | | |---------------------------------------|--------------------|----------------|--------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LSH4804C | 48-pin SSOP 4K OTP | ZGP323LSS2804C | 28-pin SOIC 4K OTP | | | ZGP323LSP4004C | 40-pin PDIP 4K OTP | ZGP323LSH2004C | 20-pin SSOP 4K OTP | | | ZGP323LSH2804C | 28-pin SSOP 4K OTP | ZGP323LSP2004C | 20-pin PDIP 4K OTP | | | ZGP323LSP2804C | 28-pin PDIP 4K OTP | ZGP323LSS2004C | 20-pin SOIC 4K OTP | | | 4KB Extended Temperature: -40° to +105°C | | | | | |--|--------------------|----------------|--------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LEH4804C | 48-pin SSOP 4K OTP | ZGP323LES2804C | 28-pin SOIC 4K OTP | | | ZGP323LEP4004C | 40-pin PDIP 4K OTP | ZGP323LEH2004C | 20-pin SSOP 4K OTP | | | ZGP323LEH2804C | 28-pin SSOP 4K OTP | ZGP323LEP2004C | 20-pin PDIP 4K OTP | | | ZGP323LEP2804C | 28-pin PDIP 4K OTP | ZGP323LES2004C | 20-pin SOIC 4K OTP | | | 4KB Automotive Temperature: -40° to +125°C | | | | | |--|--------------------|----------------|--------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LAH4804C | 48-pin SSOP 4K OTP | ZGP323LAS2804C | 28-pin SOIC 4K OTP | | | ZGP323LAP4004C | 40-pin PDIP 4K OTP | ZGP323LAH2004C | 20-pin SSOP 4K OTP | | | ZGP323LAH2804C | 28-pin SSOP 4K OTP | ZGP323LAP2004C | 20-pin PDIP 4K OTP | | | ZGP323LAP2804C | 28-pin PDIP 4K OTP | ZGP323LAS2004C | 20-pin SOIC 4K OTP | | Note: Replace C with G for Lead-Free Packaging ## **Additional Components** | Part Number | Description | Part Number | Description | |----------------|---------------------|----------------|--------------------| | ZGP323ICE01ZEM | Emulator/programmer | ZGP32300100ZPR | Programming System |