

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

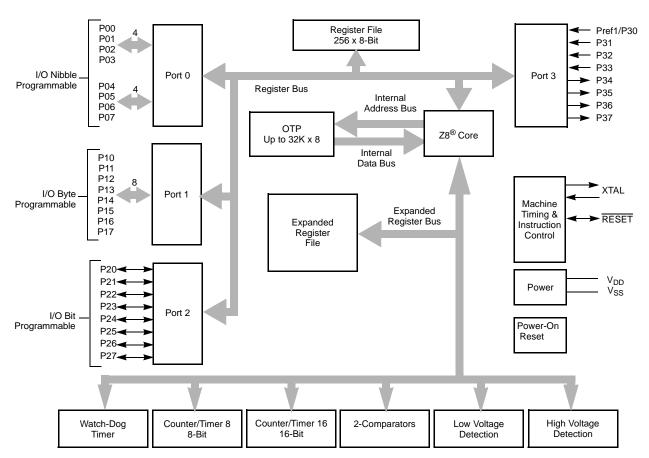
Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323leh4816c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 1 lists the features of ZiLOG®'s Z8 GPTM OTP MCU Family family members.


Table 1. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323L OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V-3.6V

- Low power consumption–6mW (typical)
- T = Temperature
 - $S = Standard 0^{\circ} to +70^{\circ}C$
 - $E = Extended -40^{\circ} to +105^{\circ}C$
 - $A = Automotive -40^{\circ} to +125^{\circ}C$
- Three standby modes:
 - STOP—2μA (typical)
 - HALT—0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4-7 pull-up transistors

Table 2. Power Connections

Connection	Circuit	Device
Power	V _{CC}	V_{DD}
Ground	GND	V _{SS}

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

AC Characteristics

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

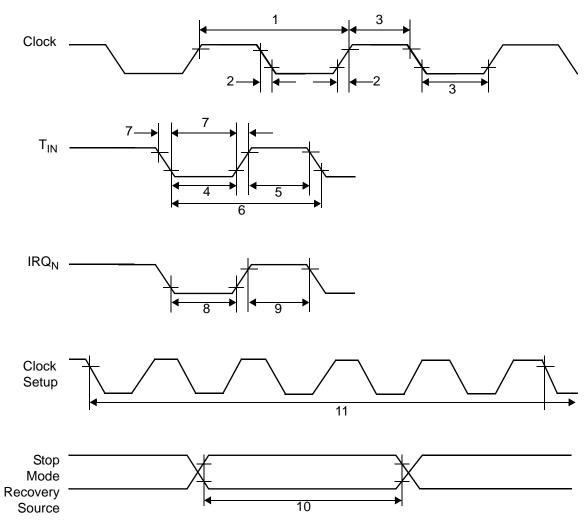


Figure 8. AC Timing Diagram

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter INT Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 13 lists and briefly describes the fields for this register.

Table 13. CTR1(0D)01H T8 and T16 Common Functions

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Note:

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

^{*}Default at Power-On Reset.

^{**}Default at Power-On Reset.Not reset with Stop Mode recovery.

Table 14. CTR2(D)02H: Counter/Timer16 Control Register

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize
				Edge
Time_Out	5	R	0*	No Counter Timeout
			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0	Disable Timeout Int.
			1	Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Note:

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

^{*}Indicates the value upon Power-On Reset.

^{**}Indicates the value upon Power-On Reset.Not reset with Stop Mode recovery.

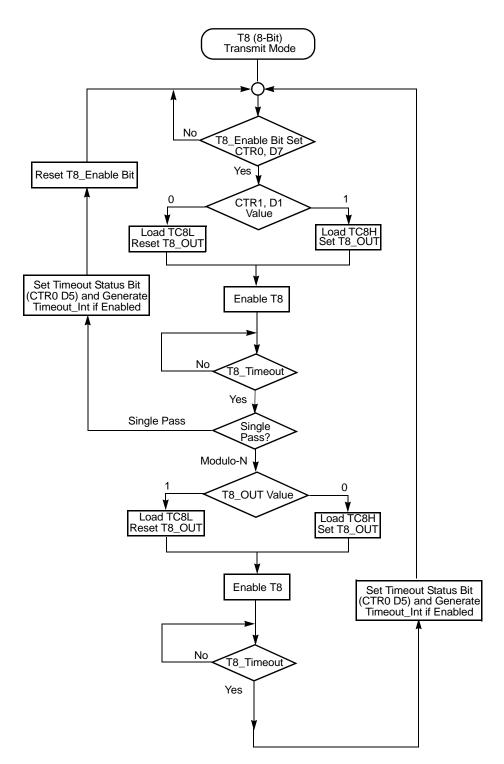


Figure 19. Transmit Mode Flowchart

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

Table 16. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	T8	8,9	Internal
IRQ5	LVD	10,11	Internal

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17.

Table 17. IRQ Register

IRQ		Interrupt Edge		
D7	D6	IRQ2 (P31)	IRQ0 (P32)	
0	0	F	F	
0	1	F	R	
1	0	R	F	
1	1	R/F	R/F	
Note	: F = Fa	ılling Edge; R = R	tising Edge	

PS023702-1004 Preliminary Functional Description

Power-On Reset

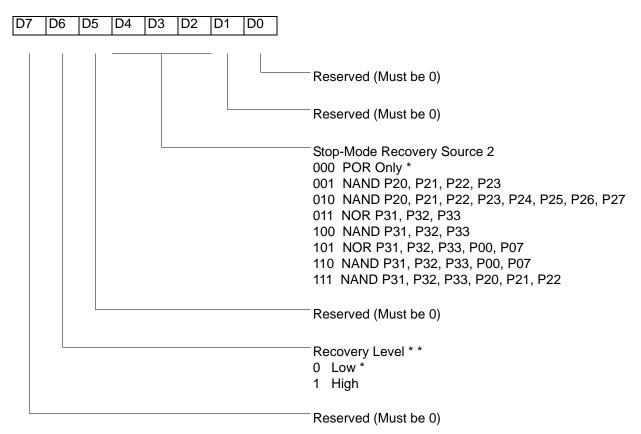
A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode


This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

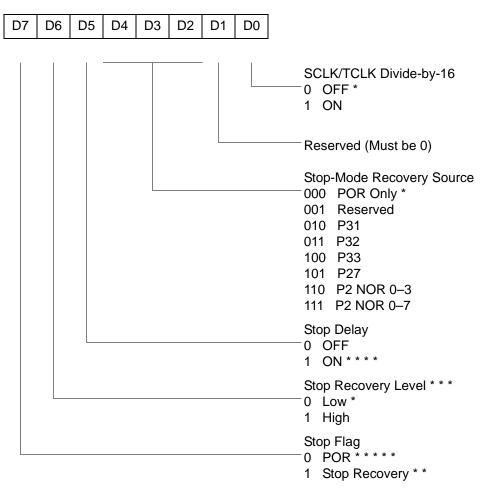
This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only)


If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

^{*} Default setting after reset

^{* *} At the XOR gate input

SMR(0F)0BH

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

 $P31\uparrow\downarrow$ $P32\uparrow\downarrow=11$

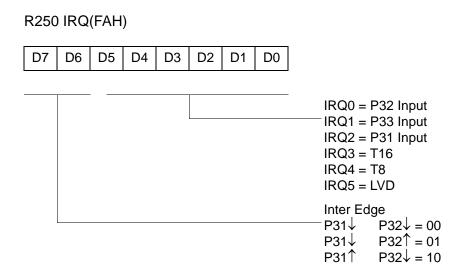
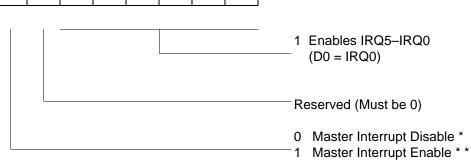



Figure 52. Interrupt Request Register (FAH: Read/Write)

D7 D6 D5 D4 D3 D2 D1 D0

^{*} Default setting after reset

R251 IMR(FBH)

Figure 53. Interrupt Mask Register (FBH: Read/Write)

^{* *} Only by using EI, DI instruction; DI is required before changing the IMR register

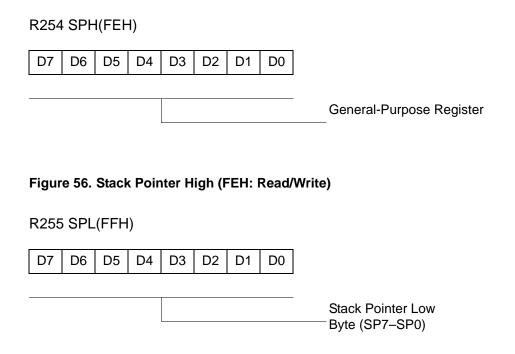


Figure 57. Stack Pointer Low (FFH: Read/Write)

Package Information

Package information for all versions of Z8 GPTM OTP MCU Family are depicted in Figures 58 through Figure 68.

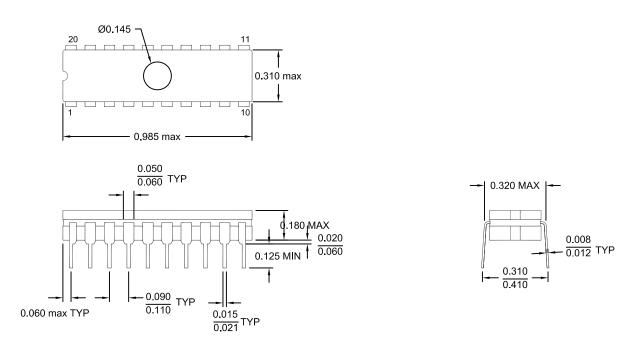


Figure 58. 20-Pin CDIP Package

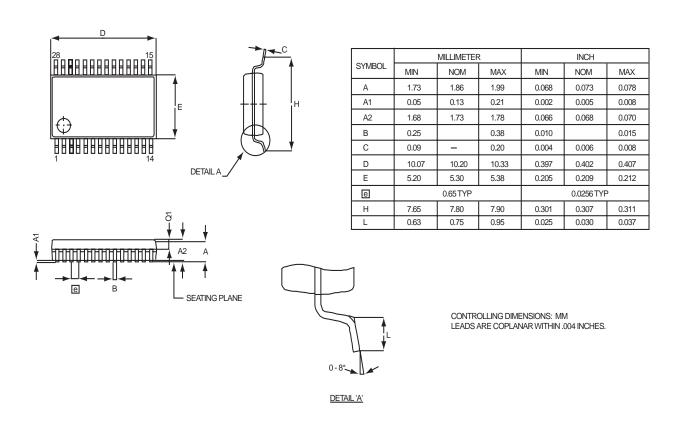


Figure 65. 28-Pin SSOP Package Diagram

Ordering Information

32KB Standard Temperature: 0° to +70°C				
Part Number	Description	Part Number	Description	
ZGP323LSH4832C	48-pin SSOP 32K OTP	ZGP323LSS2832C	28-pin SOIC 32K OTP	
ZGP323LSP4032C	40-pin PDIP 32K OTP	ZGP323LSH2032C	20-pin SSOP 32K OTP	
ZGP323LSH2832C	28-pin SSOP 32K OTP	ZGP323LSP2032C	20-pin PDIP 32K OTP	
ZGP323LSP2832C	28-pin PDIP 32K OTP	ZGP323LSS2032C	20-pin SOIC 32K OTP	
ZGP323LSK2032E	20-pin CDIP 32K OTP	ZGP323LSK4032E	40-pin CDIP 32K OTP	
		ZGP323LSK2832E	28-pin CDIP 32K OTP	

32KB Extended	Temperature:	-40° to	+105°	C
---------------	--------------	---------	-------	---

Part Number	Description	Part Number	Description
ZGP323LEH4832C	48-pin SSOP 32K OTP	ZGP323LES2832C	28-pin SOIC 32K OTP
ZGP323LEP4032C	40-pin PDIP 32K OTP	ZGP323LEH2032C	20-pin SSOP 32K OTP
ZGP323LEH2832C	28-pin SSOP 32K OTP	ZGP323LEP2032C	20-pin PDIP 32K OTP
ZGP323LEP2832C	28-pin PDIP 32K OTP	ZGP323LES2032C	20-pin SOIC 32K OTP

Part Number	Description	Part Number	Description
ZGP323LAH4832C	48-pin SSOP 32K OTP	ZGP323LAS2832C	28-pin SOIC 32K OTP
ZGP323LAP4032C	40-pin PDIP 32K OTP	ZGP323LAH2032C	20-pin SSOP 32K OTP
ZGP323LAH2832C	28-pin SSOP 32K OTP	ZGP323LAP2032C	20-pin PDIP 32K OTP
ZGP323LAP2832C	28-pin PDIP 32K OTP	ZGP323LAS2032C	20-pin SOIC 32K OTP

Note: Replace C with G for Lead-Free Packaging

16KB Standard Temperature: 0° to +70°C			
Part Number	Description	Part Number	Description
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C			
Part Number	Description	Part Number	Description
ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP
ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP
ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP
ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP

16KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP
Note: Replace C with G for Lead-Free Packaging			

PS023702-1004 Preliminary Ordering Information

4KB Standard Temperature: 0° to +70°C			
Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C			
Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System