Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 32 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-BSSOP (0.295", 7.50mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323leh4832c00tr | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Table of Contents** | Development Features | |--| | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions 10 | | DC Characteristics | | AC Characteristics | | Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23 | | Functional Description 23 Program Memory 23 RAM 23 Expanded Register File 24 Register File 28 Stack 29 Timers 30 Counter/Timer Functional Blocks 38 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) 69 | | Standard Control Registers | | Package Information | | Ordering Information | | Precharacterization Product 95 | # List of Tables | Table 1. | Features | 1 | |-----------|--|------------| | Table 2. | Power Connections | 3 | | Table 3. | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | 5 | | Table 4. | 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | 6 | | Table 5. | 40- and 48-Pin Configuration | 8 | | Table 6. | Absolute Maximum Ratings | C | | Table 7. | Capacitance | 1 | | Table 8. | DC Characteristics | 1 | | Table 9. | EPROM/OTP Characteristics | 3 | | Table 10. | AC Characteristics | 5 | | Table 11. | Port 3 Pin Function Summary | 1: | | Table 12. | CTR0(D)00H Counter/Timer8 Control Register | }1 | | Table 13. | CTR1(0D)01H T8 and T16 Common Functions 3 | 33 | | Table 14. | CTR2(D)02H: Counter/Timer16 Control Register 3 | 16 | | Table 15. | CTR3 (D)03H: T8/T16 Control Register 3 | 37 | | Table 16. | Interrupt Types, Sources, and Vectors | (| | Table 17. | IRQ Register 5 | 50 | | Table 18. | SMR2(F)0DH:Stop Mode Recovery Register 2* | 6 | | Table 19. | Stop Mode Recovery Source | 36 | | Table 20. | Watch-Dog Timer Time Select | i 1 | | Table 21 | FPROM Selectable Ontions 6 | 3 | Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration Table 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | Pin # | Symbol | Function | Direction | |-------|-----------------|--|---| | 1–3 | P25-P27 | Port 2, Bits 5,6,7 | Input/Output | | 4 | P07 | Port 0, Bit 7 | Input/Output | | 5 | V_{DD} | Power Supply | | | 6 | XTAL2 | Crystal Oscillator Clock | Output | | 7 | XTAL1 | Crystal Oscillator Clock | Input | | 8–10 | P31–P33 | Port 3, Bits 1,2,3 | Input | | 11,12 | P34. P36 | Port 3, Bits 4,6 | Output | | 13 | P00/Pref1/P30 | Port 0, Bit 0/Analog reference input
Port 3 Bit 0 | Input/Output for P00
Input for Pref1/P30 | | 14 | P01 | Port 0, Bit 1 | Input/Output | | 15 | V _{SS} | Ground | | | 16–20 | P20-P24 | Port 2, Bits 0,1,2,3,4 | Input/Output | Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use. Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | Pin | Symbol | Direction | Description | |-------|-----------------|--------------|--| | 1-3 | P25-P27 | Input/Output | Port 2, Bits 5,6,7 | | 4-7 | P04-P07 | Input/Output | Port 0, Bits 4,5,6,7 | | 8 | V_{DD} | | Power supply | | 9 | XTAL2 | Output | Crystal, oscillator clock | | 10 | XTAL1 | Input | Crystal, oscillator clock | | 11-13 | P31-P33 | Input | Port 3, Bits 1,2,3 | | 14 | P34 | Output | Port 3, Bit 4 | | 15 | P35 | Output | Port 3, Bit 5 | | 16 | P37 | Output | Port 3, Bit 7 | | 17 | P36 | Output | Port 3, Bit 6 | | 18 | Pref1/P30 | Input | Analog ref input; connect to V _{CC} if not used | | | Port 3 Bit 0 | | Input for Pref1/P30 | | 19-21 | P00-P02 | Input/Output | Port 0, Bits 0,1,2 | | 22 | V _{SS} | | Ground | | 23 | P03 | Input/Output | Port 0, Bit 3 | | 24-28 | P20-P24 | Input/Output | Port 2, Bits 0-4 | Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use. Table 5. 40- and 48-Pin Configuration (Continued) | 40-Pin PDIP/CDIP* # | 48-Pin SSOP# | Symbol | |---------------------|--------------|-----------------| | 33 | 40 | P13 | | 8 | 9 | P14 | | 9 | 10 | P15 | | 12 | 15 | P16 | | 13 | 16 | P17 | | 35 | 42 | P20 | | 36 | 43 | P21 | | 37 | 44 | P22 | | 38 | 45 | P23 | | 39 | 46 | P24 | | 2 | 2 | P25 | | 3 | 3 | P26 | | 4 | 4 | P27 | | 16 | 19 | P31 | | 17 | 20 | P32 | | 18 | 21 | P33 | | 19 | 22 | P34 | | 22 | 26 | P35 | | 24 | 28 | P36 | | 23 | 27 | P37 | | 20 | 23 | NC | | 40 | 47 | NC | | 1 | 1 | NC | | 21 | 25 | RESET | | 15 | 18 | XTAL1 | | 14 | 17 | XTAL2 | | 11 | 12, 13 | V _{DD} | | 31 | 24, 37, 38 | V _{SS} | | 25 | 29 | Pref1/P30 | | | 48 | NC | ## Capture_INT_Mask Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode. #### **Counter INT Mask** Set this bit to allow an interrupt when T8 has a timeout. #### P34_Out This bit defines whether P34 is used as a normal output pin or the T8 output. ### T8 and T16 Common Functions—CTR1(0D)01H This register controls the functions in common with the T8 and T16. Table 13 lists and briefly describes the fields for this register. Table 13. CTR1(0D)01H T8 and T16 Common Functions | Field | Bit Position | | Value | Description | |-------------------|--------------|-----|-------|-------------------| | Mode | 7 | R/W | 0* | Transmit Mode | | | | | | Demodulation Mode | | P36_Out/ | -6 | R/W | | Transmit Mode | | Demodulator_Input | | | 0* | Port Output | | | | | 1 | T8/T16 Output | | | | | | Demodulation Mode | | | | | 0 | P31 | | | | | 1 | P20 | | T8/T16_Logic/ | 54 | R/W | | Transmit Mode | | Edge _Detect | | | 00** | AND | | | | | 01 | OR | | | | | 10 | NOR | | | | | 11 | NAND | | | | | | Demodulation Mode | | | | | 00** | Falling Edge | | | | | 01 | Rising Edge | | | | | 10 | Both Edges | | | | | 11 | Reserved | Table 15. CTR3 (D)03H: T8/T16 Control Register (Continued) | Field | Bit Position | | Value | Description | |----------|--------------|---|-------|--------------------| | Reserved | 43210 | R | 1 | Always reads 11111 | | | | W | X | No Effect | Note: *Indicates the value upon Power-On Reset. #### Counter/Timer Functional Blocks #### **Input Circuit** The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18). Figure 18. Glitch Filter Circuitry #### **T8 Transmit Mode** Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19. ^{**}Indicates the value upon Power-On Reset. Not reset with Stop Mode recovery. Z i L O G **Note:** The letter h denotes hexadecimal values. Transition from 0 to FFh is not a timeout condition. \wedge **Caution:** Using the same instructions for stopping the counter/timers and setting the status bits is not recommended. Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22. Figure 21. T8_OUT in Single-Pass Mode Figure 22. T8_OUT in Modulo-N Mode #### **T8 Demodulation Mode** The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put #### If D6 of CTR2 Is 1 T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges. This T16 mode generally measures mark time, the length of an active carrier signal burst. If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1). #### **Ping-Pong Mode** This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28. **Note:** Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation. #### **During PING-PONG Mode** The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count. #### **Timer Output** The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1. #### Interrupts The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests. The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57. **Table 16. Interrupt Types, Sources, and Vectors** | Name | Source | Vector Location | Comments | |------|----------------------|-----------------|--| | IRQ0 | P32 | 0,1 | External (P32), Rising, Falling Edge Triggered | | IRQ1 | P33 | 2,3 | External (P33), Falling Edge Triggered | | IRQ2 | P31, T _{IN} | 4,5 | External (P31), Rising, Falling Edge Triggered | | IRQ3 | T16 | 6,7 | Internal | | IRQ4 | T8 | 8,9 | Internal | | IRQ5 | LVD | 10,11 | Internal | When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service. An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin. Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17. Table 17. IRQ Register | IRQ | | Interrupt Edge | | | |---|----|----------------|------------|--| | D7 | D6 | IRQ2 (P31) | IRQ0 (P32) | | | 0 | 0 | F | F | | | 0 | 1 | F | R | | | 1 | 0 | R | F | | | 1 | 1 | R/F | R/F | | | Note: F = Falling Edge; R = Rising Edge | | | | | PS023702-1004 Preliminary Functional Description #### Port 0 Output Mode (D2) Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain. #### Stop-Mode Recovery Register (SMR) This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH. ### Low-Voltage Detection Register—LVD(D)0Ch **Note:** Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current. | Field | Bit Position | | | Description | |----------|--------------|-----|---------|--------------------------------| | LVD | 76543 | | | Reserved
No Effect | | | 2 | R | 1
0* | HVD flag set
HVD flag reset | | | 1- | R | 1
0* | LVD flag set
LVD flag reset | | | 0 | R/W | 1
0* | Enable VD
Disable VD | | *Default | after POR | | | | Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag. #### **Voltage Detection and Flags** The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only. Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection. # **Expanded Register File Control Registers (0D)** The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43. ^{*} Default setting after reset Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) ^{**}Default setting after reset. Not reset with Stop Mode recovery. Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions. > Changing from one mode to another cannot be performed without disabling the counter/timers. ## SMR(0F)0BH - * Default setting after Reset - * * Set after STOP Mode Recovery - * * * At the XOR gate input - * * * * Default setting after Reset. Must be 1 if using a crystal or resonator clock source. - * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery. Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only) ## SMR2(0F)0DH Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery. - * Default setting after reset - * * At the XOR gate input Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2-D4, D6 Write Only) # R249 IPR(F9H) Figure 51. Interrupt Priority Register (F9H: Write Only) Figure 65. 28-Pin SSOP Package Diagram # Index | Numerics | counter/timer | |--------------------------------------|--| | 16-bit counter/timer circuits 44 | 16-bit circuits 44 | | 20-pin DIP package diagram 81 | 8-bit circuits 40 | | 20-pin SSOP package diagram 82 | brown-out voltage/standby 62 | | 28-pin DIP package diagram 85 | clock 51 | | 28-pin SOlCpackage diagram 84 | demodulation mode count capture flow- | | 28-pin SSOP package diagram 86 | chart 42 | | 40-pin DIP package diagram 87 | demodulation mode flowchart 43 | | 48-pin SSOP package diagram 88 | EPROM selectable options 62 | | 8-bit counter/timer circuits 40 | glitch filter circuitry 38 | | | halt instruction 52 | | | input circuit 38 | | Α | interrupt block diagram 49 | | absolute maximum ratings 10 | interrupt types, sources and vectors 50 | | AC | oscillator configuration 51 | | characteristics 14 | output circuit 47 | | timing diagram 14 | ping-pong mode 46 | | address spaces, basic 2 | port configuration register 53 | | architecture 2 | resets and WDT 61 | | expanded register file 26 | SCLK circuit 56 | | expanded register file 20 | stop instruction 52 | | | stop mode recovery register 55 | | В | stop mode recovery register 2 59 | | | stop mode recovery source 57 | | basic address spaces 2 | T16 demodulation mode 45 | | block diagram, ZLP32300 functional 3 | T16 transmit mode 44 | | | T16_OUT in modulo-N mode 45 | | С | T16_OUT in single-pass mode 45 | | | T8 demodulation mode 41 | | capacitance 11 | T8 transmit mode 38 | | characteristics | T8_OUT in modulo-N mode 41 | | AC 14 | T8_OUT in single-pass mode 41 | | DC 11 | transmit mode flowchart 39 | | clock 51 | voltage detection and flags 63 | | comparator inputs/outputs 23 | watch-dog timer mode register 60 | | configuration | watch-dog timer time select 61 | | port 0 17 | CTR(D)01h T8 and T16 Common Functions 33 | | port 1 18 | · • | | port 2 19 | | | port 3 20 | | | port 3 counter/timer 22 | |