

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

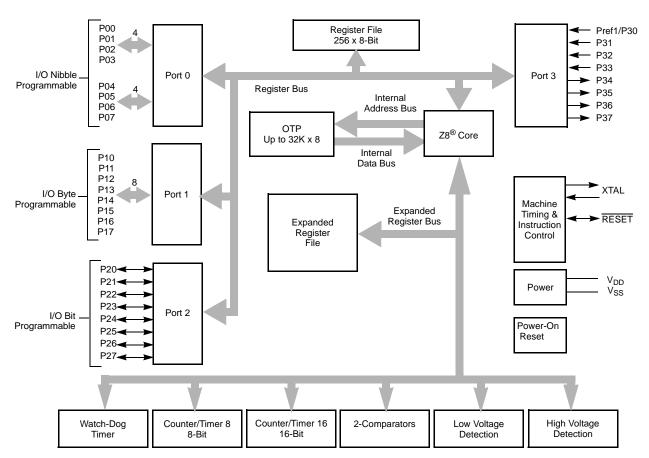
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lep2008c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



List of Tables

Table 1.	Features	. 1
Table 2.	Power Connections	. 3
Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification	. 5
Table 4.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification	. 6
Table 5.	40- and 48-Pin Configuration	. 8
Table 6.	Absolute Maximum Ratings	10
Table 7.	Capacitance	11
Table 8.	DC Characteristics	11
Table 9.	EPROM/OTP Characteristics	13
Table 10.	AC Characteristics	15
Table 11.	Port 3 Pin Function Summary	21
Table 12.	CTR0(D)00H Counter/Timer8 Control Register	31
Table 13.	CTR1(0D)01H T8 and T16 Common Functions	33
Table 14.	CTR2(D)02H: Counter/Timer16 Control Register	36
Table 15.	CTR3 (D)03H: T8/T16 Control Register	37
Table 16.	Interrupt Types, Sources, and Vectors	50
Table 17.	IRQ Register	50
Table 18.	SMR2(F)0DH:Stop Mode Recovery Register 2*	56
Table 19.	Stop Mode Recovery Source	58
Table 20.	Watch-Dog Timer Time Select	61
Table 21	EPROM Selectable Ontions	62

Table 2. Power Connections

Connection	Circuit	Device
Power	V _{CC}	V_{DD}
Ground	GND	V _{SS}

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

Z8 GP OTP 4 — Port 0 (I/O)

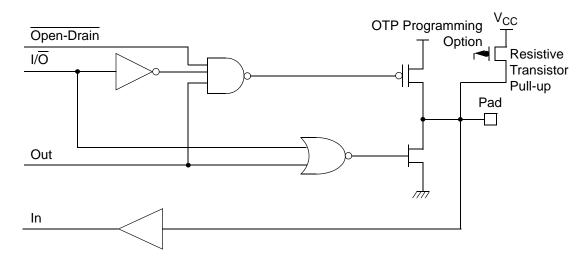
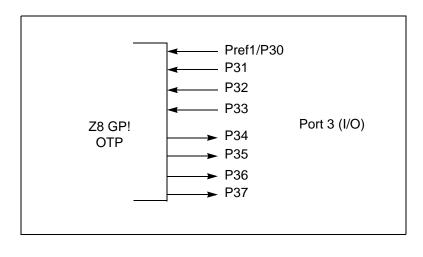



Figure 9. Port 0 Configuration

Port 1 (P17-P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to be input following an SMR.

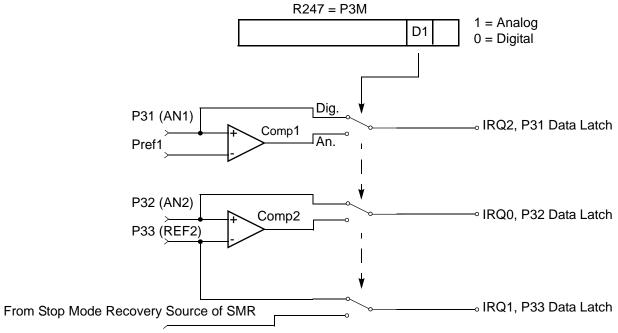


Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 14 lists and briefly describes the fields for this register.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

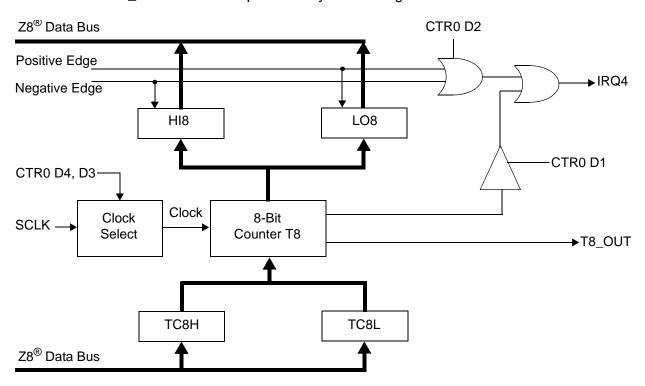


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

Note: The letter h denotes hexadecimal values.

Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

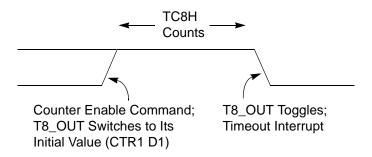


Figure 21. T8_OUT in Single-Pass Mode

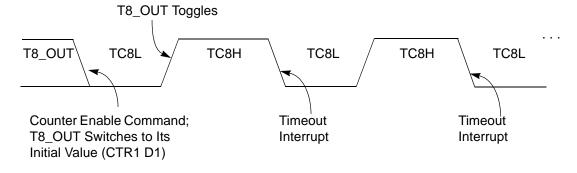


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

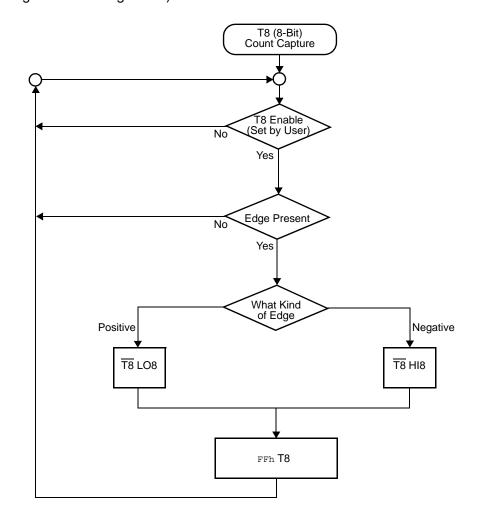


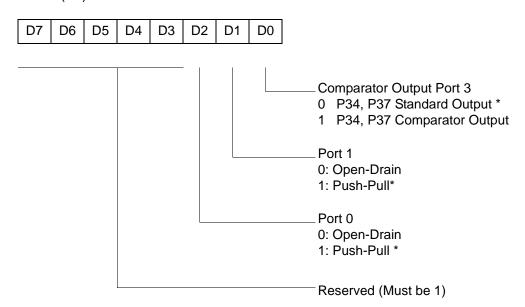
Figure 23. Demodulation Mode Count Capture Flowchart

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

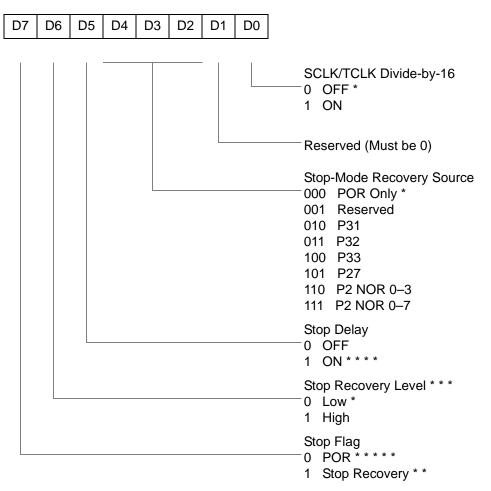
There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21.


Table 21. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

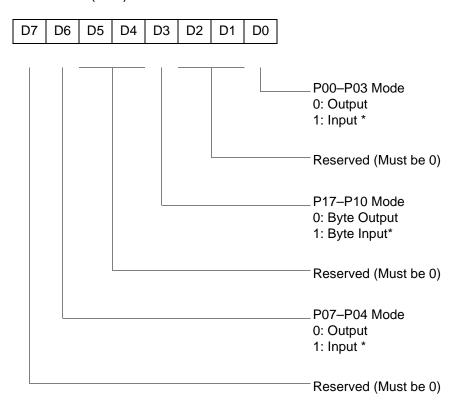
Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.


PCON(0F)00H

^{*} Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)


SMR(0F)0BH

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

R248 P01M(F8H)

^{*} Default setting after reset; only P00, P01 and P07 are available in 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

 $P31\uparrow\downarrow$ $P32\uparrow\downarrow=11$

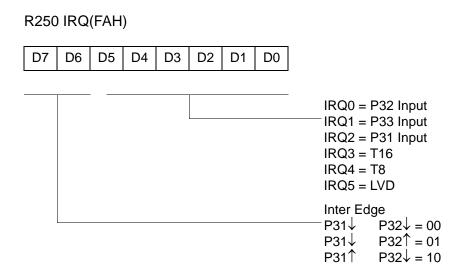
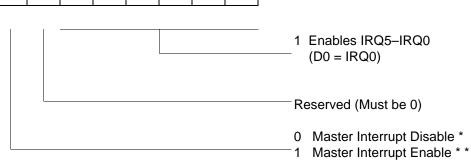



Figure 52. Interrupt Request Register (FAH: Read/Write)

D7 D6 D5 D4 D3 D2 D1 D0

^{*} Default setting after reset

R251 IMR(FBH)

Figure 53. Interrupt Mask Register (FBH: Read/Write)

^{* *} Only by using EI, DI instruction; DI is required before changing the IMR register

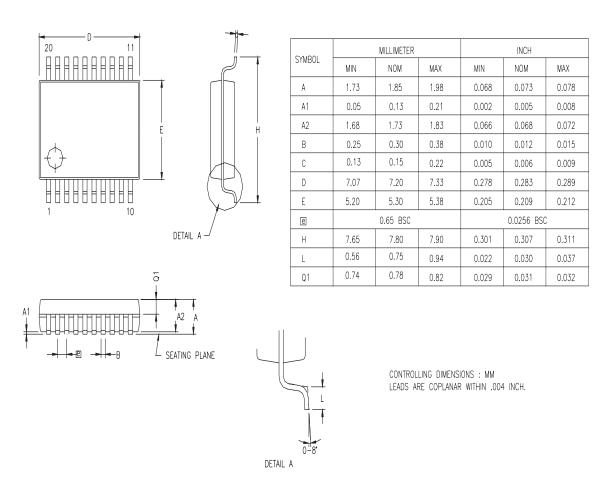
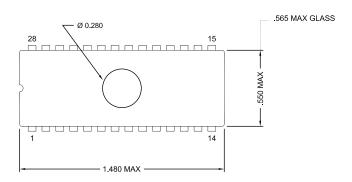
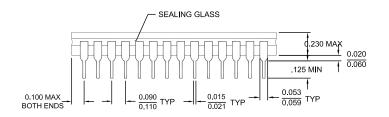




Figure 61. 20-Pin SSOP Package Diagram

ZiLOG

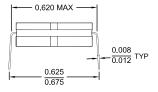
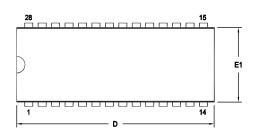
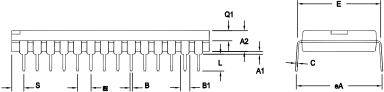




Figure 62. 28-Pin CDIP Package

 		U U L L H	A1	
		_		

OPTION TABLE
OPTION # PACKAGE
01 STANDARD
02 IDF

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

SYMBOL	OPT#	MILLIMETER		INC	ж
SIMBOL	OF1#	MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
ы	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
Е		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
	02	12.83	13.08	.505	.515
е		2.54	2.54 TYP		BSC
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
01	01	1.40	1.91	.055	.075
ų,	02	1.40	1.78	.055	.070
_	01	1.52	2.29	.060	.090
S	02	1.02	1.52	.040	.060

CONTROLLING DIMENSIONS : INCH

Ordering Information

32KB Standard Temperature: 0° to +70°C				
Part Number	Description	Part Number	Description	
ZGP323LSH4832C	48-pin SSOP 32K OTP	ZGP323LSS2832C	28-pin SOIC 32K OTP	
ZGP323LSP4032C	40-pin PDIP 32K OTP	ZGP323LSH2032C	20-pin SSOP 32K OTP	
ZGP323LSH2832C	28-pin SSOP 32K OTP	ZGP323LSP2032C	20-pin PDIP 32K OTP	
ZGP323LSP2832C	28-pin PDIP 32K OTP	ZGP323LSS2032C	20-pin SOIC 32K OTP	
ZGP323LSK2032E	20-pin CDIP 32K OTP	ZGP323LSK4032E	40-pin CDIP 32K OTP	
		ZGP323LSK2832E	28-pin CDIP 32K OTP	

32KB Extended	Temperature:	-40° to	+105°	C
---------------	--------------	---------	-------	---

Part Number	Description	Part Number	Description
ZGP323LEH4832C	48-pin SSOP 32K OTP	ZGP323LES2832C	28-pin SOIC 32K OTP
ZGP323LEP4032C	40-pin PDIP 32K OTP	ZGP323LEH2032C	20-pin SSOP 32K OTP
ZGP323LEH2832C	28-pin SSOP 32K OTP	ZGP323LEP2032C	20-pin PDIP 32K OTP
ZGP323LEP2832C	28-pin PDIP 32K OTP	ZGP323LES2032C	20-pin SOIC 32K OTP

Part Number	Description	Part Number	Description
ZGP323LAH4832C	48-pin SSOP 32K OTP	ZGP323LAS2832C	28-pin SOIC 32K OTP
ZGP323LAP4032C	40-pin PDIP 32K OTP	ZGP323LAH2032C	20-pin SSOP 32K OTP
ZGP323LAH2832C	28-pin SSOP 32K OTP	ZGP323LAP2032C	20-pin PDIP 32K OTP
ZGP323LAP2832C	28-pin PDIP 32K OTP	ZGP323LAS2032C	20-pin SOIC 32K OTP

Note: Replace C with G for Lead-Free Packaging

8KB Standard Temperature: 0° to +70°C				
Part Number	Description	Part Number	Description	
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP	
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP	
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP	
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP	

8KB Extended Temperature: -40° to +105°C			
Part Number	Description	Part Number	Description
ZGP323LEH4808C	48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP
ZGP323LEP4008C	40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP
ZGP323LEH2808C	28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP
ZGP323LEP2808C	28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP

8KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP

Note: Replace C with G for Lead-Free Packaging

4KB Standard Temperature: 0° to +70°C			
Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C			
Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System

Index

Numerics	Counter/timer
16-bit counter/timer circuits 44	16-bit circuits 44
20-pin DIP package diagram 81	8-bit circuits 40
20-pin SSOP package diagram 82	brown-out voltage/standby 62
28-pin DIP package diagram 85	clock 51
28-pin SOICpackage diagram 84	demodulation mode count capture flow-
28-pin SSOP package diagram 86	chart 42
40-pin DIP package diagram 87	demodulation mode flowchart 43
48-pin SSOP package diagram 88	EPROM selectable options 62
8-bit counter/timer circuits 40	glitch filter circuitry 38
	halt instruction 52
	input circuit 38
A	interrupt block diagram 49
absolute maximum ratings 10	interrupt types, sources and vectors 50
AC	oscillator configuration 51
characteristics 14	output circuit 47
timing diagram 14	ping-pong mode 46
address spaces, basic 2	port configuration register 53
architecture 2	resets and WDT 61
expanded register file 26	SCLK circuit 56
	stop instruction 52
	stop mode recovery register 55
В	stop mode recovery register 2 59
basic address spaces 2	stop mode recovery source 57
block diagram, ZLP32300 functional 3	T16 demodulation mode 45
block diagram, ZEI 32300 farictional 3	T16 transmit mode 44
	T16_OUT in modulo-N mode 45
C	T16_OUT in single-pass mode 45
capacitance 11	T8 demodulation mode 41
characteristics	T8 transmit mode 38
AC 14	T8_OUT in modulo-N mode 41
DC 11	T8_OUT in single-pass mode 41
clock 51	transmit mode flowchart 39
comparator inputs/outputs 23	voltage detection and flags 63
configuration	watch-dog timer mode register 60
port 0 17	watch-dog timer time select 61
port 1 18	CTR(D)01h T8 and T16 Common Functions 33
port 2 19	
port 3 20	
port 3 counter/timer 22	
port o counter/timer ZZ	