

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lep2016c

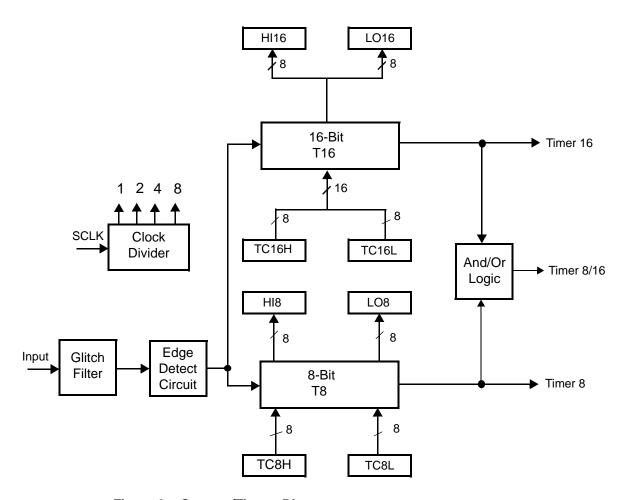


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

Absolute Maximum Ratings

Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 6. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+70	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
Voltage on V _{DD} pin with respect to V _{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	- 5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V _{DD} or out of V _{SS}		75	mA	

Notes:

This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

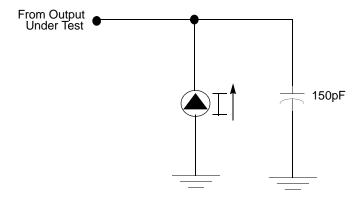


Figure 7. Test Load Diagram

Table 9. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	25			Cycles	1

Notes:

- 1. For windowed cerdip package only.
- 2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)]

Where:

Ea is the intrinsic activation energy (eV; typ. 0.8)

k is Boltzman's constant (8.67 x 10-5 eV/°K)

°K = -273.16°C

Tuse = Use Temperature in °K

TStress = Stress Temperature in °K

3. At a stable UV Lamp output of 20mW/CM²

Z8 GP OTP 4 — Port 0 (I/O)

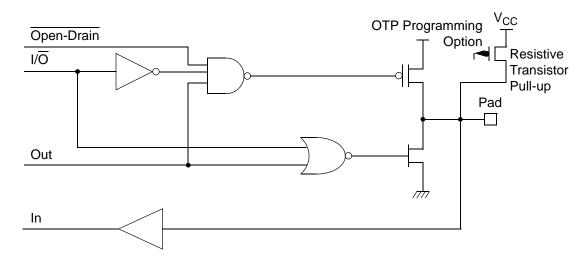


Figure 9. Port 0 Configuration

Port 1 (P17-P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to be input following an SMR.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field Bit Position			Description
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field Bit Position			Description
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field Bit Position			Description
T16_Data_HI	[7:0]	R/W	Data

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 45.

Time Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16 Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 15 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 15. CTR3 (D)03H: T8/T16 Control Register

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
-		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
-			1	Enable Sync Mode

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

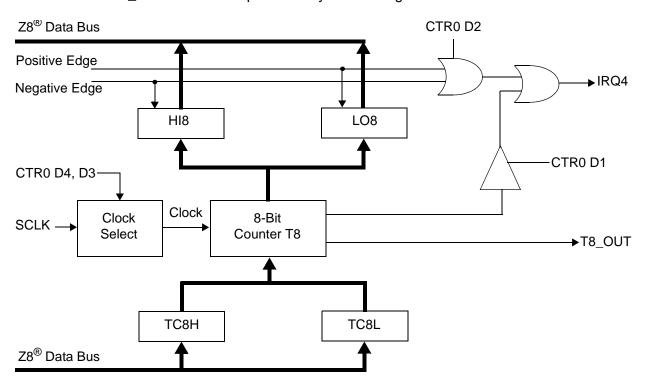


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

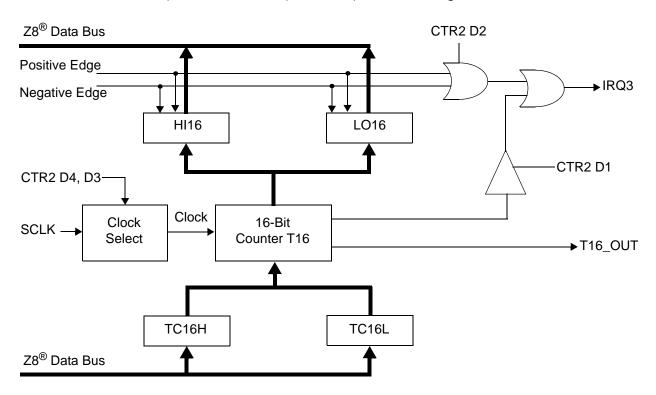
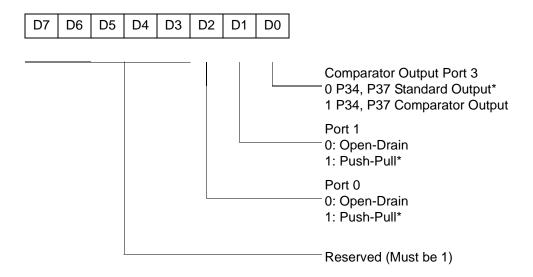


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.


```
FF NOP ; clear the pipeline 6F Stop ; enter Stop Mode

Or

FF NOP ; clear the pipeline 7F HALT ; enter HALT Mode
```

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00. PCON(FH)00H

^{*} Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Table 19. Stop Mode Recovery Source

SMR	SMR:432		Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

CTR1(0D)01H D7 D6 D5 D3 D1 D0 D4 D2 Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially **Demodulation Mode** R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially **Demodulation Mode** R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 **Demodulation Mode** 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND **Demodulation Mode** 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved

Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)

Transmit Mode

Demodulation Mode

Transmit/Demodulation Mode

0 Transmit Mode *

0 P36 as Port Output *1 P36 as T8/T16_OUT

0 P31 as Demodulator Input1 P20 as Demodulator Input

CTR2(0D)02H

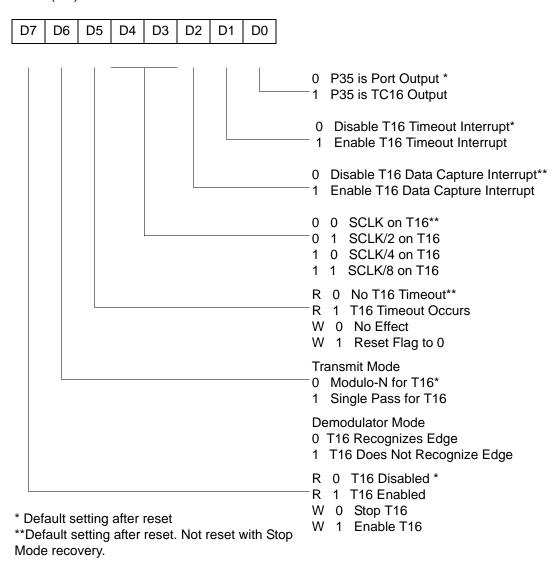
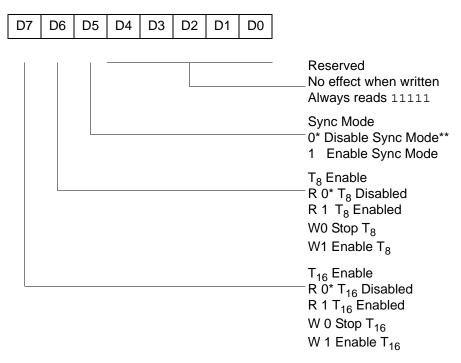



Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

CTR3(0D)03H

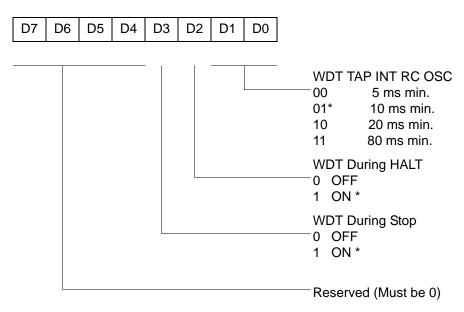
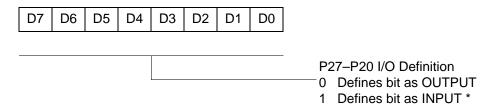

^{*} Default setting after reset.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

^{**} Default setting after reset. Not reset with Stop Mode recovery.

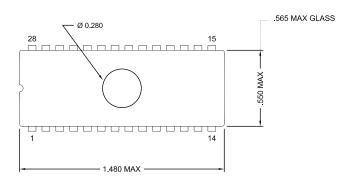
WDTMR(0F)0FH

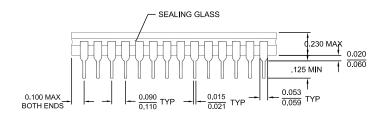


^{*} Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers


R246 P2M(F6H)



^{*} Default setting after reset

Figure 48. Port 2 Mode Register (F6H: Write Only)

ZiLOG

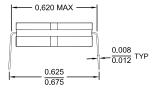
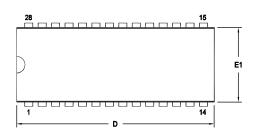
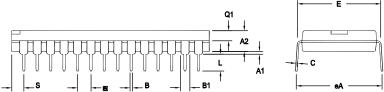




Figure 62. 28-Pin CDIP Package

 		U U L L H	A1	
		_		

OPTION TABLE
OPTION # PACKAGE
01 STANDARD
02 IDF

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

SYMBOL	OPT#	MILLIN	IETER .	INC	ж
SIMBOL	OF1#	MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
ы	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
Е		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
	02	12.83	13.08	.505	.515
е		2.54 TYP		.100	BSC
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
01	01	1.40	1.91	.055	.075
ų,	02	1.40	1.78	.055	.070
_	01	1.52	2.29	.060	.090
S	02	1.02	1.52	.040	.060

CONTROLLING DIMENSIONS : INCH

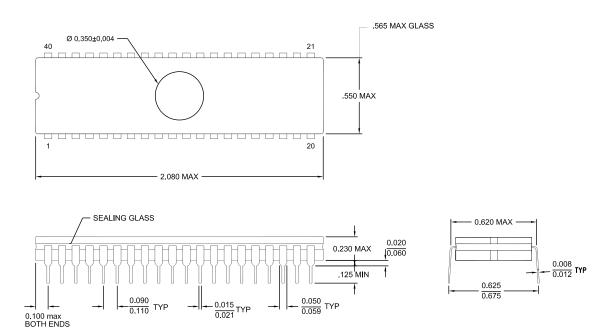


Figure 66. 40-Pin CDIP Package

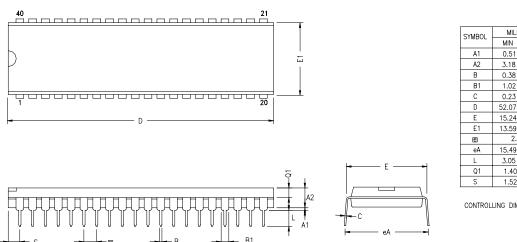


Figure 67. 40-Pin PDIP Package Diagram

SYMBOL	MILLIMETER		INCH	
SIMIDOL	MIN	MAX	MIN	MAX
A1	0.51	1.02	.020	.040
A2	3.18	3.94	.125	.155
В	0.38	0.53	.015	.021
B1	1.02	1.52	.040	.060
С	0.23	0.38	.009	.015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	.600	.620
E1	13.59	14.22	.535	.560
e	2.54 TYP		.100	TYP
eA	15.49	16.76	.610	.660
L	3.05	3.81	.120	.150
Q1	1.40	1.91	.055	.075
S	1.52	2.29	.060	.090

CONTROLLING DIMENSIONS : INCH

Ordering Information

32KB Standard Temperature: 0° to +70°C			
Part Number	Description	Part Number	Description
ZGP323LSH4832C	48-pin SSOP 32K OTP	ZGP323LSS2832C	28-pin SOIC 32K OTP
ZGP323LSP4032C	40-pin PDIP 32K OTP	ZGP323LSH2032C	20-pin SSOP 32K OTP
ZGP323LSH2832C	28-pin SSOP 32K OTP	ZGP323LSP2032C	20-pin PDIP 32K OTP
ZGP323LSP2832C	28-pin PDIP 32K OTP	ZGP323LSS2032C	20-pin SOIC 32K OTP
ZGP323LSK2032E	20-pin CDIP 32K OTP	ZGP323LSK4032E	40-pin CDIP 32K OTP
		ZGP323LSK2832E	28-pin CDIP 32K OTP

32KB Extended	Temperature:	-40° to	+105°	C
---------------	--------------	---------	-------	---

Part Number	Description	Part Number	Description
ZGP323LEH4832C	48-pin SSOP 32K OTP	ZGP323LES2832C	28-pin SOIC 32K OTP
ZGP323LEP4032C	40-pin PDIP 32K OTP	ZGP323LEH2032C	20-pin SSOP 32K OTP
ZGP323LEH2832C	28-pin SSOP 32K OTP	ZGP323LEP2032C	20-pin PDIP 32K OTP
ZGP323LEP2832C	28-pin PDIP 32K OTP	ZGP323LES2032C	20-pin SOIC 32K OTP

Part Number	Description	Part Number	Description
ZGP323LAH4832C	48-pin SSOP 32K OTP	ZGP323LAS2832C	28-pin SOIC 32K OTP
ZGP323LAP4032C	40-pin PDIP 32K OTP	ZGP323LAH2032C	20-pin SSOP 32K OTP
ZGP323LAH2832C	28-pin SSOP 32K OTP	ZGP323LAP2032C	20-pin PDIP 32K OTP
ZGP323LAP2832C	28-pin PDIP 32K OTP	ZGP323LAS2032C	20-pin SOIC 32K OTP

Note: Replace C with G for Lead-Free Packaging

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZG = ZiLOG General Purpose Family

P = OTP

323 = Family Designation

L = Voltage Range

2V to 3.6V

T = Temperature Range:

S = 0 to 70 degrees C (Standard)

E = -40 to +105 degrees C (Extended)

A = -40 to +125 degrees C (Automotive)

P = Package Type:

K = Windowed Cerdip

P = PDIP

H = SSOP

S = SOIC

= Number of Pins

CC = Memory Size

M = Packaging Options

C = Non Lead-Free

G = Lead-Free

E = CDIP

M	port 1 configuration 18			
memory, program 23	port 1 pin function 17			
modulo-N mode	port 2 configuration 19			
T16_OUT 45	port 2 pin function 18			
T8 OUT 41	port 3 configuration 20			
_	port 3 pin function 19			
	port 3counter/timer configuration 22			
0	port configuration register 53			
oscillator configuration 51	power connections 3			
output circuit, counter/timer 47	power supply 5			
catput on oak, oo anton times 17	precharacterization product 95			
	program memory 23			
P	map 24			
package information				
20-pin DIP package diagram 81	R			
20-pin SSOP package diagram 82				
28-pin DIP package diagram 85	ratings, absolute maximum 10			
28-pin SOIC package diagram 84	register 59			
28-pin SSOP package diagram 86	CTR(D)01h 33			
40-pin DIP package diagram 87	CTR0(D)00h 31			
48-pin SSOP package diagram 88	CTR2(D)02h 35			
pin configuration	CTR3(D)03h 37			
20-pin DIP/SOIC/SSOP 5	flag 78			
28-pin DIP/SOIC/SSOP 6	HI16(D)09h 30			
40- and 48-pin 8	HI8(D)0Bh 30 interrupt priority 76			
40-pin DIP 7	interrupt request 77			
48-pin SSOP 8	interrupt request 77			
pin functions	L016(D)08h 30			
port 0 (P07 - P00) 16	L08(D)0Ah 30			
port 0 (P17 - P10) 17	LVD(D)0Ch 63			
port 0 configuration 17	pointer 78			
port 1 configuration 18	port 0 and 1 75			
port 2 (P27 - P20) 18	port 2 configuration 73			
port 2 (P37 - P30) 19	port 3 mode 74			
port 2 configuration 19	port configuration 53, 73			
port 3 configuration 20	SMR2(F)0Dh 38			
port 3 counter/timer configuration 22	stack pointer high 79			
reset) 23	stack pointer low 79			
XTAL1 (time-based input 16	stop mode recovery 55			
XTAL2 (time-based output) 16	stop mode recovery 2 59			
ping-pong mode 46	stop-mode recovery 71			
port 0 configuration 17	stop-mode recovery 2 72			
port 0 pin function 16	T16 control 67			