

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lep2804c
Supplier Device Package	-
Package / Case	28-DIP (0.600", 15.24mm)
Mounting Type	Through Hole
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	Internal
Data Converters	-
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
RAM Size	237 x 8
EEPROM Size	-
Program Memory Type	ОТР
Program Memory Size	4KB (4K x 8)
Number of I/O	24
Peripherals	HLVD, POR, WDT
Connectivity	-
Speed	8MHz
Core Size	8-Bit
Core Processor	Z8
Product Status	Obsolete
Details	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500

Fax: 408.558.8300 www.zilog.com

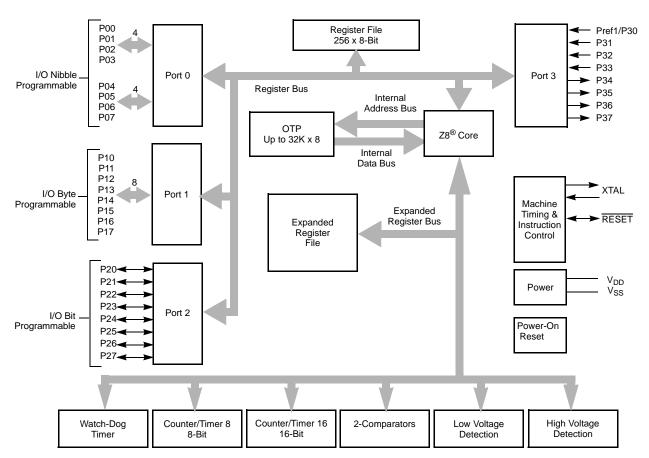
ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Development Features

Table 1 lists the features of ZiLOG®'s Z8 GPTM OTP MCU Family family members.


Table 1. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323L OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V-3.6V

- Low power consumption–6mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended -40^{\circ} to +105^{\circ}C$
 - $A = Automotive -40^{\circ} to +125^{\circ}C$
- Three standby modes:
 - STOP—2μA (typical)
 - HALT—0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4-7 pull-up transistors

Table 2. Power Connections

Connection	Circuit	Device
Power	V _{CC}	V_{DD}
Ground	GND	V _{SS}

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

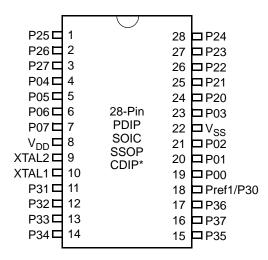


Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V_{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

Absolute Maximum Ratings

Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 6. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+70	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
Voltage on V _{DD} pin with respect to V _{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	- 5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V _{DD} or out of V _{SS}		75	mA	

Notes:

This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

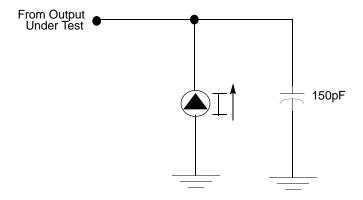


Figure 7. Test Load Diagram

CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11.

Note: Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Table 11. Port 3 Pin Function Summary

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	T8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

Table 15. CTR3 (D)03H: T8/T16 Control Register (Continued)

Field	Bit Position		Value	Description
Reserved	43210	R	1	Always reads 11111
		W	X	No Effect

Note: *Indicates the value upon Power-On Reset.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18).

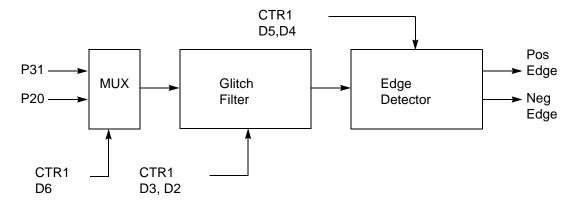


Figure 18. Glitch Filter Circuitry

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19.

^{**}Indicates the value upon Power-On Reset. Not reset with Stop Mode recovery.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

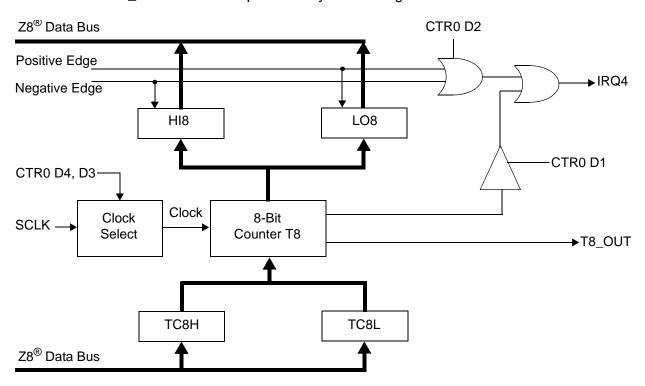


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

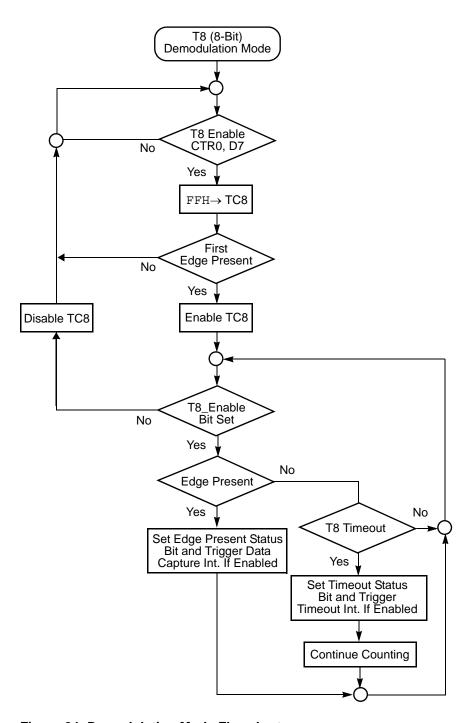
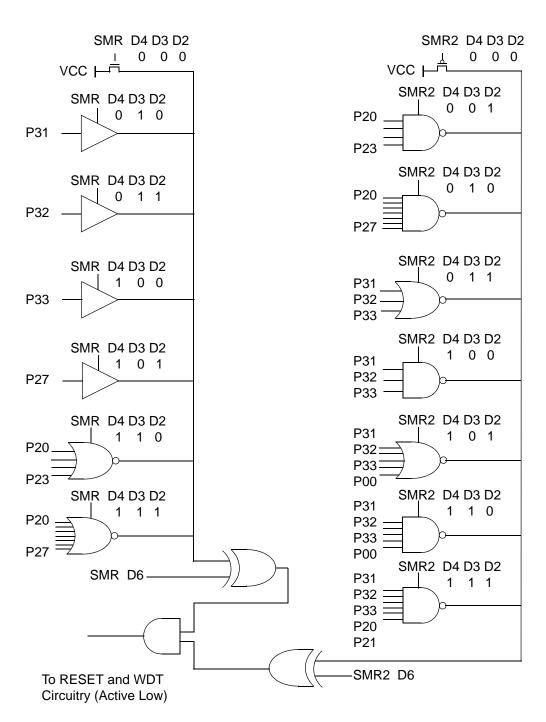


Figure 24. Demodulation Mode Flowchart

z i L o G | 57



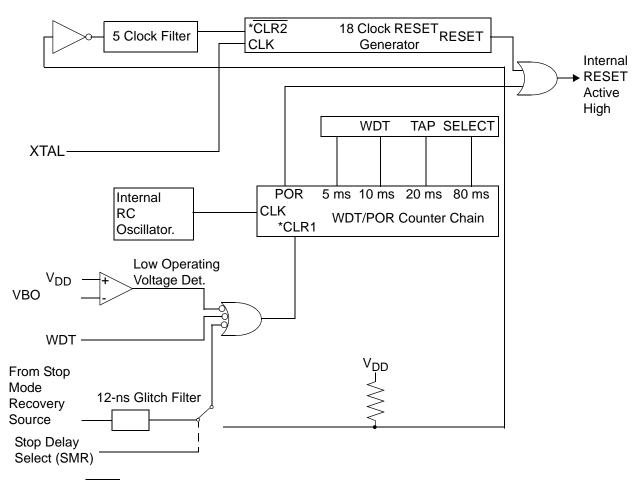
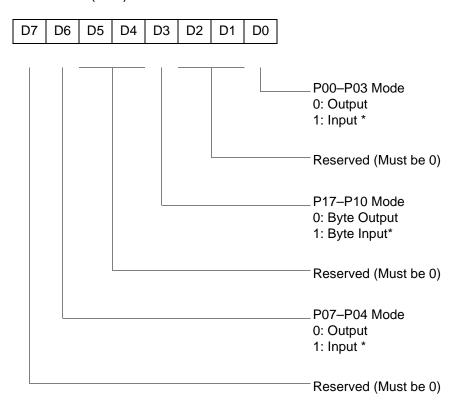

Figure 35. Stop Mode Recovery Source

Table 20. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)


This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

^{*} CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High input translation.

Figure 38. Resets and WDT

R248 P01M(F8H)

^{*} Default setting after reset; only P00, P01 and P07 are available in 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

R249 IPR(F9H)

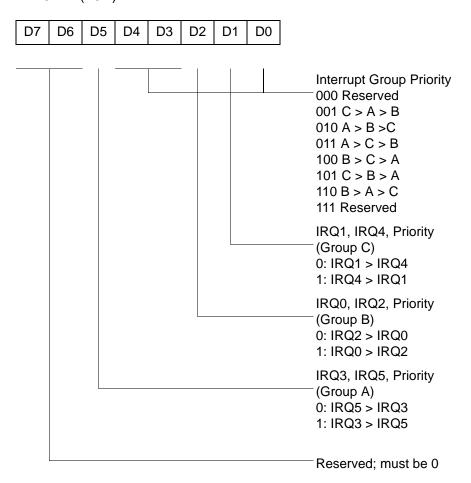


Figure 51. Interrupt Priority Register (F9H: Write Only)

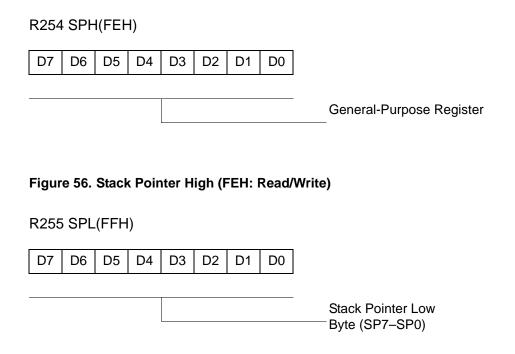


Figure 57. Stack Pointer Low (FFH: Read/Write)

Package Information

Package information for all versions of Z8 GPTM OTP MCU Family are depicted in Figures 58 through Figure 68.

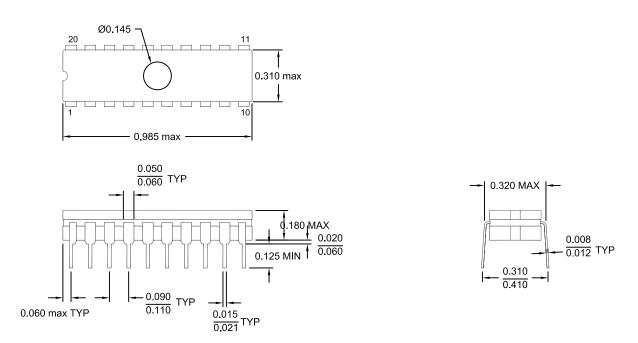
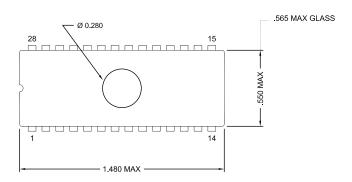
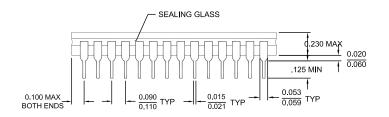




Figure 58. 20-Pin CDIP Package

ZiLOG

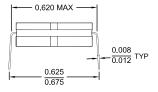
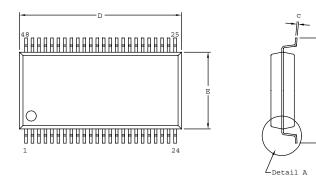



Figure 62. 28-Pin CDIP Package

SYMBOL	MILLIMETER		INC	СН
SIMBOL	MIN	MAX	MIN	MAX
A	2.41	2.79	0.095	0.110
A1	0.23	0.38	0.009	0.015
A2	2.18	2.39	0.086	0.094
ь	0.20	0.34	0.008	0.0135
С	0.13	0.25	0.005	0.010
D	15.75	16.00	0.620	0.630
E	7.39	7.59	0.291	0.299
e	0.635 BSC		0.0	25 BSC
Н	10.16	10.41	0.400	0.410
L	0.51	1.016	0.020	0.040

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

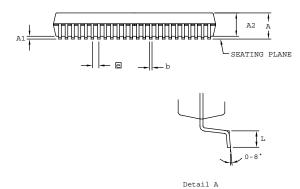


Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

16KB Standard Temperature: 0° to +70°C						
Part Number	Description	Part Number	Description			
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP			
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP			
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP			
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP			

16KB Extended Temperature: -40° to +105°C					
Part Number	Description	Part Number	Description		
ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP		
ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP		
ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP		
ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP		

16KB Automotive Temperature: -40° to +125°C					
Part Number	Description	Part Number	Description		
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP		
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP		
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP		
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP		
Note: Replace C with G for Lead-Free Packaging					

PS023702-1004 Preliminary Ordering Information

8KB Standard Temperature: 0° to +70°C				
Part Number	Description	Part Number	Description	
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP	
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP	
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP	
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP	

8KB Extended Temperature: -40° to +105°C				
Part Number	Description	Part Number	Description	
ZGP323LEH4808C	48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP	
ZGP323LEP4008C	40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP	
ZGP323LEH2808C	28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP	
ZGP323LEP2808C	28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP	

8KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP	
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP	
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP	
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP	

Note: Replace C with G for Lead-Free Packaging

Index

Numerics	Counter/timer
16-bit counter/timer circuits 44	16-bit circuits 44
20-pin DIP package diagram 81	8-bit circuits 40
20-pin SSOP package diagram 82	brown-out voltage/standby 62
28-pin DIP package diagram 85	clock 51
28-pin SOICpackage diagram 84	demodulation mode count capture flow-
28-pin SSOP package diagram 86	chart 42
40-pin DIP package diagram 87	demodulation mode flowchart 43
48-pin SSOP package diagram 88	EPROM selectable options 62
8-bit counter/timer circuits 40	glitch filter circuitry 38
	halt instruction 52
	input circuit 38
A	interrupt block diagram 49
absolute maximum ratings 10	interrupt types, sources and vectors 50
AC	oscillator configuration 51
characteristics 14	output circuit 47
timing diagram 14	ping-pong mode 46
address spaces, basic 2	port configuration register 53
architecture 2	resets and WDT 61
expanded register file 26	SCLK circuit 56
	stop instruction 52
	stop mode recovery register 55
В	stop mode recovery register 2 59
basic address spaces 2	stop mode recovery source 57
block diagram, ZLP32300 functional 3	T16 demodulation mode 45
block diagram, ZEI 32300 farictional 3	T16 transmit mode 44
	T16_OUT in modulo-N mode 45
С	T16_OUT in single-pass mode 45
capacitance 11	T8 demodulation mode 41
characteristics	T8 transmit mode 38
AC 14	T8_OUT in modulo-N mode 41
DC 11	T8_OUT in single-pass mode 41
clock 51	transmit mode flowchart 39
comparator inputs/outputs 23	voltage detection and flags 63
configuration	watch-dog timer mode register 60
port 0 17	watch-dog timer time select 61
port 1 18	CTR(D)01h T8 and T16 Common Functions 33
port 2 19	
port 3 20	
port 3 counter/timer 22	
port o counter/timer ZZ	