

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323les2008g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 GPTM OTP MCU Family Product Specification

Figure 35.	Stop Mode Recovery Source	57
Figure 36.	Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) .	59
Figure 37.	Watch-Dog Timer Mode Register (Write Only)	60
Figure 38.	Resets and WDT	61
Figure 39.	TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)	64
Figure 40.	T8 and T16 Common Control Functions ((0D)01H: Read/Write)	65
Figure 41.	T16 Control Register ((0D) 2H: Read/Write Except Where Noted) .	67
Figure 42.	T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)	68
Figure 43.	Voltage Detection Register	69
Figure 44.	Port Configuration Register (PCON)(0F)00H: Write Only)	70
Figure 45.	Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	71
Figure 46.	Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	72
Figure 47.	Watch-Dog Timer Register ((0F) 0FH: Write Only)	73
Figure 48.	Port 2 Mode Register (F6H: Write Only)	73
Figure 49.	Port 3 Mode Register (F7H: Write Only)	74
Figure 50.	Port 0 and 1 Mode Register (F8H: Write Only)	75
Figure 51.	Interrupt Priority Register (F9H: Write Only)	76
Figure 52.	Interrupt Request Register (FAH: Read/Write)	77
Figure 53.	Interrupt Mask Register (FBH: Read/Write)	77
Figure 54.	Flag Register (FCH: Read/Write)	78
Figure 55.	Register Pointer (FDH: Read/Write)	78
Figure 56.	Stack Pointer High (FEH: Read/Write)	79
Figure 57.	Stack Pointer Low (FFH: Read/Write)	79
Figure 58.	20-Pin CDIP Package	80
Figure 59.	20-Pin PDIP Package Diagram	81
Figure 60.	20-Pin SOIC Package Diagram	81
Figure 61.	20-Pin SSOP Package Diagram	82
Figure 62.	28-Pin CDIP Package	83
Figure 63.	28-Pin SOIC Package Diagram	84
Figure 64.	28-Pin PDIP Package Diagram	85
Figure 65.	28-Pin SSOP Package Diagram	86
Figure 66.	40-Pin CDIP Package	87
Figure 67.	40-Pin PDIP Package Diagram	87
Figure 68.	48-Pin SSOP Package Design	88

List of Tables

Table 1.	Features	. 1
Table 2.	Power Connections	. 3
Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification	. 5
Table 4.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification	. 6
Table 5.	40- and 48-Pin Configuration	. 8
Table 6.	Absolute Maximum Ratings	10
Table 7.	Capacitance	11
Table 8.	DC Characteristics	11
Table 9.	EPROM/OTP Characteristics	13
Table 10.	AC Characteristics	15
Table 11.	Port 3 Pin Function Summary	21
Table 12.	CTR0(D)00H Counter/Timer8 Control Register	31
Table 13.	CTR1(0D)01H T8 and T16 Common Functions	33
Table 14.	CTR2(D)02H: Counter/Timer16 Control Register	36
Table 15.	CTR3 (D)03H: T8/T16 Control Register	37
Table 16.	Interrupt Types, Sources, and Vectors	50
Table 17.	IRQ Register	50
Table 18.	SMR2(F)0DH:Stop Mode Recovery Register 2*	56
Table 19.	Stop Mode Recovery Source	58
Table 20.	Watch-Dog Timer Time Select	61
Table 21	EPROM Selectable Ontions	62

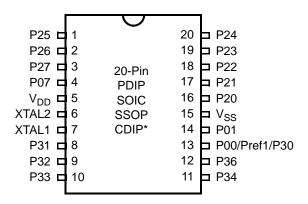


Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin #	Symbol	Function	Direction
1–3	P25-P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V_{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34. P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

AC Characteristics

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

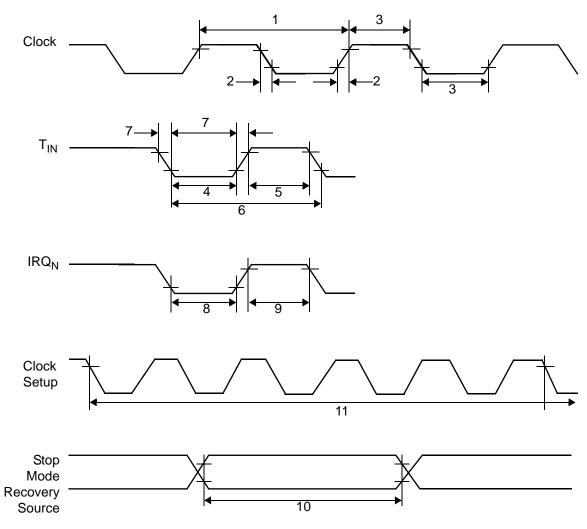


Figure 8. AC Timing Diagram

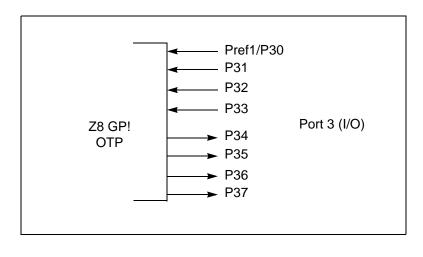
XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)


Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

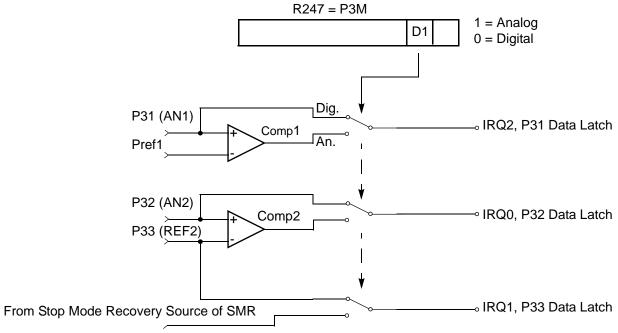


Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

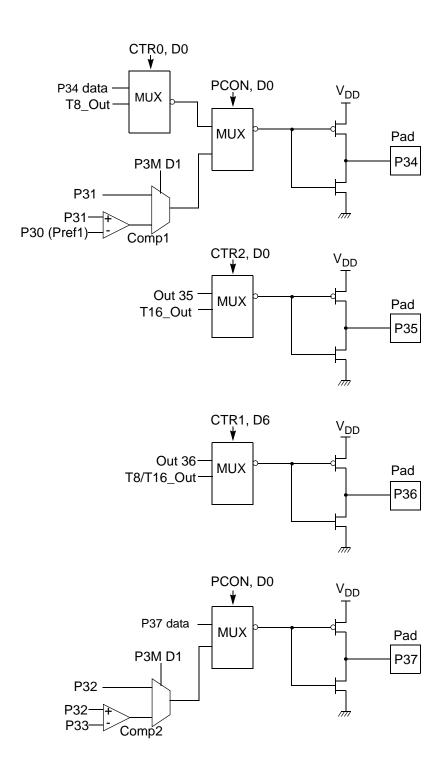


Figure 13. Port 3 Counter/Timer Output Configuration

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 20. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP^{TM} asserts (Low) the \overline{RESET} pin, the internal pull-up is disabled. The Z8 GP^{TM} does not assert the \overline{RESET} pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

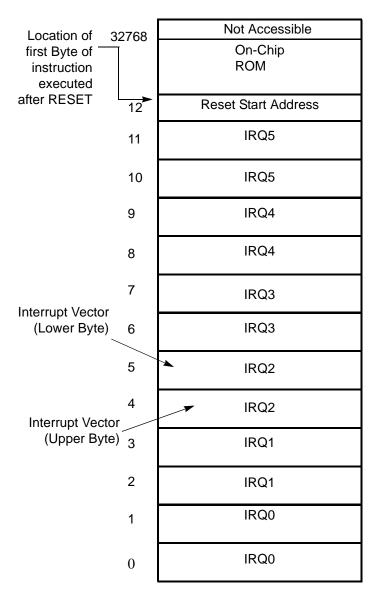


Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description	
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description	
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description	
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

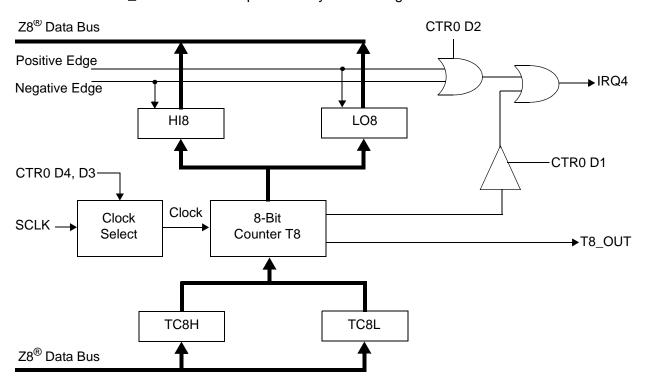


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

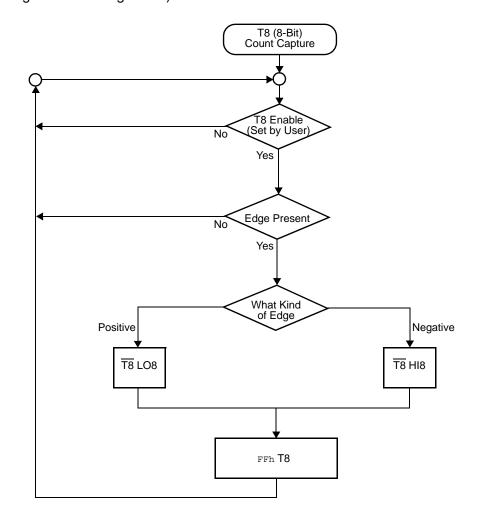


Figure 23. Demodulation Mode Count Capture Flowchart

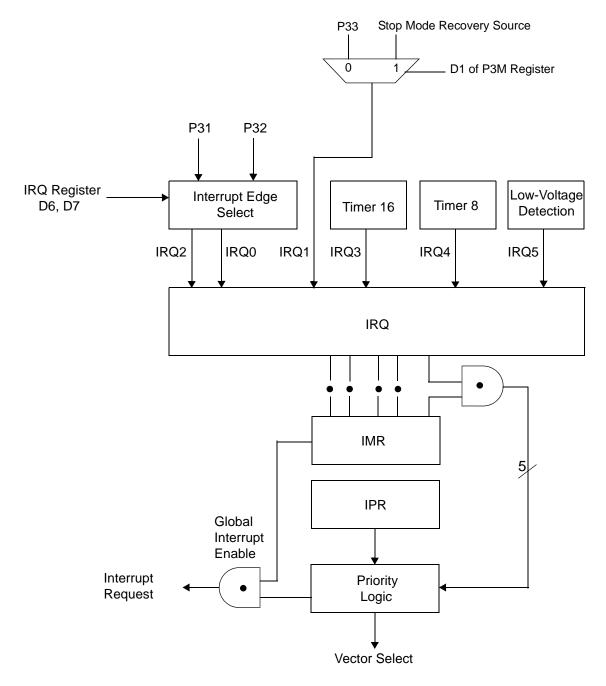


Figure 30. Interrupt Block Diagram

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

Table 19. Stop Mode Recovery Source

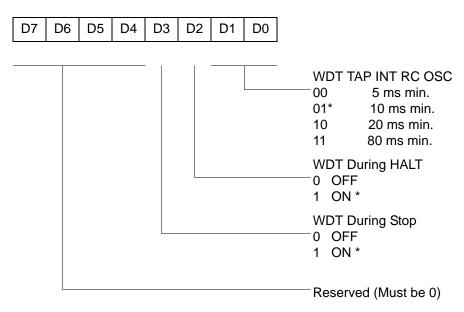
SMR	R:432 Operation		
D4	D3	D2	Description of Action
0	0	0	POR and/or external reset recovery
0	0	1	Reserved
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

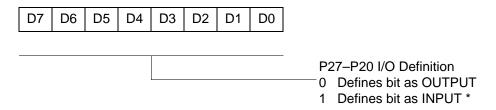

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

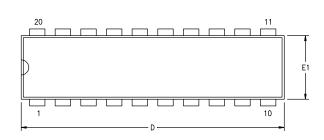
This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

WDTMR(0F)0FH

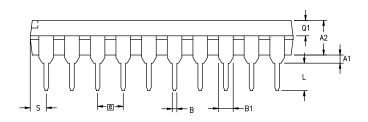


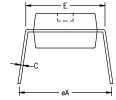
^{*} Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)


Standard Control Registers

R246 P2M(F6H)


^{*} Default setting after reset


Figure 48. Port 2 Mode Register (F6H: Write Only)

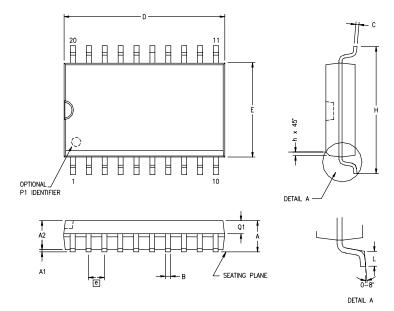
SYMBOL	MILLIMETER		INC	Н
STMIDOL	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
В	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
С	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
е	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065

CONTROLLING DIMENSIONS : INCH

SYMBOL

A1

A2


В

С

D

е

Figure 59. 20-Pin PDIP Package Diagram

h	0.30	0.40	.012	.016
L	0.60	1.00	.024	.039
Q1	0.97	1.07	.038	.042

MILLIMETER

MAX

2.65

0.30

2.44

0.30

12.95

7.60

MIN

.094

.004

.088

.009

496

.291

.050 BSC

MAX

.104

.012

.096

.018

.012

.510

.299

.016

MIN

2.40

0.10

2.24

0.36

0.23

12.60

7.40

1.27 BSC

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 60. 20-Pin SOIC Package Diagram

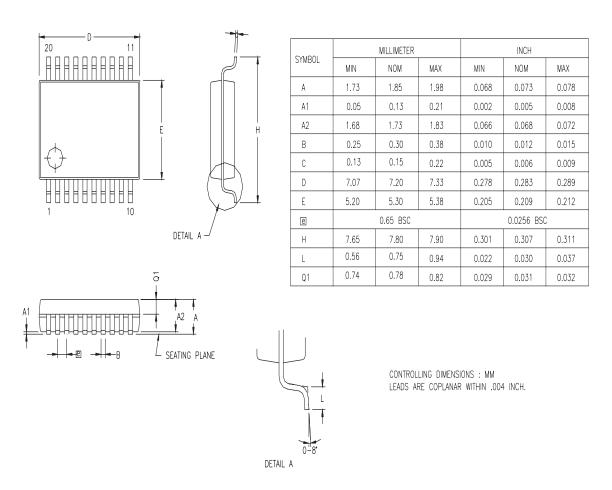


Figure 61. 20-Pin SSOP Package Diagram

16KB Standard Temperature: 0° to +70°C				
Part Number	Description	Part Number	Description	
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP	
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP	
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP	
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP	

16KB Extended Temperature: -40° to +105°C				
	Part Number	Description	Part Number	Description
	ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP
	ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP
	ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP
	ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP

16KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP	
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP	
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP	
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP	
Note: Replace C with G for Lead-Free Packaging				

PS023702-1004 Preliminary Ordering Information

Index

Numerics	Counter/timer
16-bit counter/timer circuits 44	16-bit circuits 44
20-pin DIP package diagram 81	8-bit circuits 40
20-pin SSOP package diagram 82	brown-out voltage/standby 62
28-pin DIP package diagram 85	clock 51
28-pin SOICpackage diagram 84	demodulation mode count capture flow-
28-pin SSOP package diagram 86	chart 42
40-pin DIP package diagram 87	demodulation mode flowchart 43
48-pin SSOP package diagram 88	EPROM selectable options 62
8-bit counter/timer circuits 40	glitch filter circuitry 38
	halt instruction 52
	input circuit 38
A	interrupt block diagram 49
absolute maximum ratings 10	interrupt types, sources and vectors 50
AC	oscillator configuration 51
characteristics 14	output circuit 47
timing diagram 14	ping-pong mode 46
address spaces, basic 2	port configuration register 53
architecture 2	resets and WDT 61
expanded register file 26	SCLK circuit 56
	stop instruction 52
	stop mode recovery register 55
В	stop mode recovery register 2 59
basic address spaces 2	stop mode recovery source 57
block diagram, ZLP32300 functional 3	T16 demodulation mode 45
block diagram, ZEI 32300 farictional 3	T16 transmit mode 44
	T16_OUT in modulo-N mode 45
С	T16_OUT in single-pass mode 45
capacitance 11	T8 demodulation mode 41
characteristics	T8 transmit mode 38
AC 14	T8_OUT in modulo-N mode 41
DC 11	T8_OUT in single-pass mode 41
clock 51	transmit mode flowchart 39
comparator inputs/outputs 23	voltage detection and flags 63
configuration	watch-dog timer mode register 60
port 0 17	watch-dog timer time select 61
port 1 18	CTR(D)01h T8 and T16 Common Functions 33
port 2 19	
port 3 20	
port 3 counter/timer 22	
port o counter/timer ZZ	