Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|-----------------------------------------------------------| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 24 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323les2816c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Table of Contents** | Development Features | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions 10 | | DC Characteristics | | AC Characteristics | | Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23 | | Functional Description 23 Program Memory 23 RAM 23 Expanded Register File 24 Register File 28 Stack 29 Timers 30 Counter/Timer Functional Blocks 38 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) 69 | | Standard Control Registers | | Package Information | | Ordering Information | | Precharacterization Product 95 | # Z8 GPTM OTP MCU Family Product Specification | Figure 35. | Stop Mode Recovery Source | 57 | |------------|-----------------------------------------------------------------------|----| | Figure 36. | Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) . | 59 | | Figure 37. | Watch-Dog Timer Mode Register (Write Only) | 60 | | Figure 38. | Resets and WDT | 61 | | Figure 39. | TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) | 64 | | Figure 40. | T8 and T16 Common Control Functions ((0D)01H: Read/Write) | 65 | | Figure 41. | T16 Control Register ((0D) 2H: Read/Write Except Where Noted) . | 67 | | Figure 42. | T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted) | 68 | | Figure 43. | Voltage Detection Register | 69 | | Figure 44. | Port Configuration Register (PCON)(0F)00H: Write Only) | 70 | | Figure 45. | Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only) | 71 | | Figure 46. | Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only) | 72 | | Figure 47. | Watch-Dog Timer Register ((0F) 0FH: Write Only) | 73 | | Figure 48. | Port 2 Mode Register (F6H: Write Only) | 73 | | Figure 49. | Port 3 Mode Register (F7H: Write Only) | 74 | | Figure 50. | Port 0 and 1 Mode Register (F8H: Write Only) | 75 | | Figure 51. | Interrupt Priority Register (F9H: Write Only) | 76 | | Figure 52. | Interrupt Request Register (FAH: Read/Write) | 77 | | Figure 53. | Interrupt Mask Register (FBH: Read/Write) | 77 | | Figure 54. | Flag Register (FCH: Read/Write) | 78 | | Figure 55. | Register Pointer (FDH: Read/Write) | 78 | | Figure 56. | Stack Pointer High (FEH: Read/Write) | 79 | | Figure 57. | Stack Pointer Low (FFH: Read/Write) | 79 | | Figure 58. | 20-Pin CDIP Package | 80 | | Figure 59. | 20-Pin PDIP Package Diagram | 81 | | Figure 60. | 20-Pin SOIC Package Diagram | 81 | | Figure 61. | 20-Pin SSOP Package Diagram | 82 | | Figure 62. | 28-Pin CDIP Package | 83 | | Figure 63. | 28-Pin SOIC Package Diagram | 84 | | Figure 64. | 28-Pin PDIP Package Diagram | 85 | | Figure 65. | 28-Pin SSOP Package Diagram | 86 | | Figure 66. | 40-Pin CDIP Package | 87 | | Figure 67. | 40-Pin PDIP Package Diagram | 87 | | Figure 68. | 48-Pin SSOP Package Design | 88 | Figure 2. Counter/Timers Diagram # **Pin Description** The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5. For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production. Figure 10. Port 1 Configuration ## Port 2 (P27-P20) Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs. Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode. CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11. **Note:** Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode. **Table 11. Port 3 Pin Function Summary** | Pin | I/O | Counter/Timers | Comparator | Interrupt | |-----------|-----|----------------|------------|-----------| | Pref1/P30 | IN | | RF1 | | | P31 | IN | IN | AN1 | IRQ2 | | P32 | IN | | AN2 | IRQ0 | | P33 | IN | | RF2 | IRQ1 | | P34 | OUT | T8 | AO1 | | | P35 | OUT | T16 | | | | P36 | OUT | T8/16 | | | | P37 | OUT | | AO2 | | | P20 | I/O | IN | | | Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2. Figure 13. Port 3 Counter/Timer Output Configuration #### **Timers** #### T8_Capture_HI—HI8(D)0BH This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1. | Field | Bit Position | | Description | | |---------------|--------------|-----|---------------------------|--| | T8_Capture_HI | [7:0] | R/W | Captured Data - No Effect | | #### T8_Capture_LO—L08(D)0AH This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0. | Field | Bit Position | | Description | | |---------------|--------------|-----|---------------------------|--| | T8_Capture_L0 | [7:0] | R/W | Captured Data - No Effect | | #### T16_Capture_HI—HI16(D)09H This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data. | Field | Bit Position | | Description | | |----------------|--------------|-----|---------------------------|--| | T16_Capture_HI | [7:0] | R/W | Captured Data - No Effect | | #### T16_Capture_LO—L016(D)08H This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data. | Field | Bit Position | Description | |----------------|---------------------|-------------------------------| | T16_Capture_LO | [7:0] | R/W Captured Data - No Effect | #### Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H | Field | Bit Position | | Description | |-------------|--------------|-----|-------------| | T16_Data_HI | [7:0] | R/W | Data | | Field Bit Position | | | Description | |--------------------|-------|-----|-------------| | T16_Data_LO | [7:0] | R/W | Data | #### Counter/Timer8 High Hold Register—TC8H(D)05H | Field | Bit Position | | Description | |-------------|--------------|-----|-------------| | T8_Level_HI | [7:0] | R/W | Data | #### Counter/Timer8 Low Hold Register—TC8L(D)04H | Field Bit Position | | | Description | |--------------------|-------|-----|-------------| | T8_Level_LO | [7:0] | R/W | Data | ## CTR0 Counter/Timer8 Control Register—CTR0(D)00H Table 12 lists and briefly describes the fields for this register. Table 12. CTR0(D)00H Counter/Timer8 Control Register | Field | Bit Position | | Value | Description | |------------------|--------------|-----|-------|--------------------------------| | T8_Enable | 7 | R/W | 0* | Counter Disabled | | | | | 1 | Counter Enabled | | | | | 0 | Stop Counter | | | | | 1 | Enable Counter | | Single/Modulo-N | -6 | R/W | 0 | Modulo-N | | | | | 1 | Single Pass | | Time_Out | 5 | R/W | 0 | No Counter Time-Out | | | | | 1 | Counter Time-Out Occurred | | | | | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | T8 _Clock | 43 | R/W | 0 0 | SCLK | | | | | 0 1 | SCLK/2 | | | | | 1 0 | SCLK/4 | | | | | 11 | SCLK/8 | | Capture_INT_Mask | 2 | R/W | 0 | Disable Data Capture Interrupt | | | | | 1 | Enable Data Capture Interrupt | Z i L O G **Note:** The letter h denotes hexadecimal values. Transition from 0 to FFh is not a timeout condition. \wedge **Caution:** Using the same instructions for stopping the counter/timers and setting the status bits is not recommended. Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22. Figure 21. T8_OUT in Single-Pass Mode Figure 22. T8_OUT in Modulo-N Mode #### **T8 Demodulation Mode** The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24). Figure 23. Demodulation Mode Count Capture Flowchart Figure 24. Demodulation Mode Flowchart #### If D6 of CTR2 Is 1 T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges. This T16 mode generally measures mark time, the length of an active carrier signal burst. If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1). #### **Ping-Pong Mode** This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28. **Note:** Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation. #### **Power-On Reset** A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of three conditions: - Power Fail to Power OK status, including Waking up from V_{BO} Standby - Stop-Mode Recovery (if D5 of SMR = 1) - WDT Timeout The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock). #### **HALT Mode** This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode. #### **STOP Mode** This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows: ``` FF NOP ; clear the pipeline 6F Stop ; enter Stop Mode Or FF NOP ; clear the pipeline 7F HALT ; enter HALT Mode ``` #### **Port Configuration Register** The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00. PCON(FH)00H ^{*} Default setting after reset Figure 32. Port Configuration Register (PCON) (Write Only) #### **Comparator Output Port 3 (D0)** Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration. #### Port 1 Output Mode (D1) Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain. z i L o G | 57 Figure 35. Stop Mode Recovery Source #### **Stop Mode Recovery Register 2 (SMR2)** This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery. Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery. **Note:** Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation. ^{*} Default setting after reset ^{* *} At the XOR gate input # **Expanded Register File Control Registers (0D)** The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43. ^{*} Default setting after reset Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) ^{**}Default setting after reset. Not reset with Stop Mode recovery. | 16KB Standard Temperature: 0° to +70°C | | | | |----------------------------------------|---------------------|----------------|---------------------| | Part Number | Description | Part Number | Description | | ZGP323LSH4816C | 48-pin SSOP 16K OTP | ZGP323LSS2816C | 28-pin SOIC 16K OTP | | ZGP323LSP4016C | 40-pin PDIP 16K OTP | ZGP323LSH2016C | 20-pin SSOP 16K OTP | | ZGP323LSH2816C | 28-pin SSOP 16K OTP | ZGP323LSP2016C | 20-pin PDIP 16K OTP | | ZGP323LSP2816C | 28-pin PDIP 16K OTP | ZGP323LSS2016C | 20-pin SOIC 16K OTP | | 16KB Extended Temperature: -40° to +105°C | | | | |-------------------------------------------|---------------------|----------------|---------------------| | Part Number | Description | Part Number | Description | | ZGP323LEH4816C | 48-pin SSOP 16K OTP | ZGP323LES2816C | 28-pin SOIC 16K OTP | | ZGP323LEP4016C | 40-pin PDIP 16K OTP | ZGP323LES2016C | 20-pin SOIC 16K OTP | | ZGP323LEH2816C | 28-pin SSOP 16K OTP | ZGP323LEH2016C | 20-pin SSOP 16K OTP | | ZGP323LEP2816C | 28-pin PDIP 16K OTP | ZGP323LEP2016C | 20-pin PDIP 16K OTP | | 16KB Automotive Temperature: -40° to +125°C | | | | |------------------------------------------------|---------------------|----------------|---------------------| | Part Number | Description | Part Number | Description | | ZGP323LAH4816C | 48-pin SSOP 16K OTP | ZGP323LAS2816C | 28-pin SOIC 16K OTP | | ZGP323LAP4016C | 40-pin PDIP 16K OTP | ZGP323LAH2016C | 20-pin SSOP 16K OTP | | ZGP323LAH2816C | 28-pin SSOP 16K OTP | ZGP323LAP2016C | 20-pin PDIP 16K OTP | | ZGP323LAP2816C | 28-pin PDIP 16K OTP | ZGP323LAS2016C | 20-pin SOIC 16K OTP | | | | | | | Note: Replace C with G for Lead-Free Packaging | | | | PS023702-1004 Preliminary Ordering Information | 8KB Standard Temperature: 0° to +70°C | | | | |---------------------------------------|--------------------|----------------|--------------------| | Part Number | Description | Part Number | Description | | ZGP323LSH4808C | 48-pin SSOP 8K OTP | ZGP323LSS2808C | 28-pin SOIC 8K OTP | | ZGP323LSP4008C | 40-pin PDIP 8K OTP | ZGP323LSH2008C | 20-pin SSOP 8K OTP | | ZGP323LSH2808C | 28-pin SSOP 8K OTP | ZGP323LSP2008C | 20-pin PDIP 8K OTP | | ZGP323LSP2808C | 28-pin PDIP 8K OTP | ZGP323LSS2008C | 20-pin SOIC 8K OTP | | 8KB Extended Temperature: -40° to +105°C | | | | |------------------------------------------|--------------------|----------------|--------------------| | Part Number | Description | Part Number | Description | | ZGP323LEH4808C | 48-pin SSOP 8K OTP | ZGP323LES2808C | 28-pin SOIC 8K OTP | | ZGP323LEP4008C | 40-pin PDIP 8K OTP | ZGP323LEH2008C | 20-pin SSOP 8K OTP | | ZGP323LEH2808C | 28-pin SSOP 8K OTP | ZGP323LEP2008C | 20-pin PDIP 8K OTP | | ZGP323LEP2808C | 28-pin PDIP 8K OTP | ZGP323LES2008C | 20-pin SOIC 8K OTP | | 8KB Automotive Temperature: -40° to +125°C | | | | |--------------------------------------------|--------------------|----------------|--------------------| | Part Number | Description | Part Number | Description | | ZGP323LAH4808C | 48-pin SSOP 8K OTP | ZGP323LAS2808C | 28-pin SOIC 8K OTP | | ZGP323LAP4008C | 40-pin PDIP 8K OTP | ZGP323LAH2008C | 20-pin SSOP 8K OTP | | ZGP323LAH2808C | 28-pin SSOP 8K OTP | ZGP323LAP2008C | 20-pin PDIP 8K OTP | | ZGP323LAP2808C | 28-pin PDIP 8K OTP | ZGP323LAS2008C | 20-pin SOIC 8K OTP | Note: Replace C with G for Lead-Free Packaging | 4KB Standard Temperature: 0° to +70°C | | | | |---------------------------------------|--------------------|----------------|--------------------| | Part Number | Description | Part Number | Description | | ZGP323LSH4804C | 48-pin SSOP 4K OTP | ZGP323LSS2804C | 28-pin SOIC 4K OTP | | ZGP323LSP4004C | 40-pin PDIP 4K OTP | ZGP323LSH2004C | 20-pin SSOP 4K OTP | | ZGP323LSH2804C | 28-pin SSOP 4K OTP | ZGP323LSP2004C | 20-pin PDIP 4K OTP | | ZGP323LSP2804C | 28-pin PDIP 4K OTP | ZGP323LSS2004C | 20-pin SOIC 4K OTP | | 4KB Extended Temperature: -40° to +105°C | | | | |------------------------------------------|--------------------|----------------|--------------------| | Part Number | Description | Part Number | Description | | ZGP323LEH4804C | 48-pin SSOP 4K OTP | ZGP323LES2804C | 28-pin SOIC 4K OTP | | ZGP323LEP4004C | 40-pin PDIP 4K OTP | ZGP323LEH2004C | 20-pin SSOP 4K OTP | | ZGP323LEH2804C | 28-pin SSOP 4K OTP | ZGP323LEP2004C | 20-pin PDIP 4K OTP | | ZGP323LEP2804C | 28-pin PDIP 4K OTP | ZGP323LES2004C | 20-pin SOIC 4K OTP | | 4KB Automotive Temperature: -40° to +125°C | | | | |--------------------------------------------|--------------------|----------------|--------------------| | Part Number | Description | Part Number | Description | | ZGP323LAH4804C | 48-pin SSOP 4K OTP | ZGP323LAS2804C | 28-pin SOIC 4K OTP | | ZGP323LAP4004C | 40-pin PDIP 4K OTP | ZGP323LAH2004C | 20-pin SSOP 4K OTP | | ZGP323LAH2804C | 28-pin SSOP 4K OTP | ZGP323LAP2004C | 20-pin PDIP 4K OTP | | ZGP323LAP2804C | 28-pin PDIP 4K OTP | ZGP323LAS2004C | 20-pin SOIC 4K OTP | Note: Replace C with G for Lead-Free Packaging Additional Components | Part Number | Description | Part Number | Description | |----------------|---------------------|----------------|--------------------| | ZGP323ICE01ZEM | Emulator/programmer | ZGP32300100ZPR | Programming System |