

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323les2832g

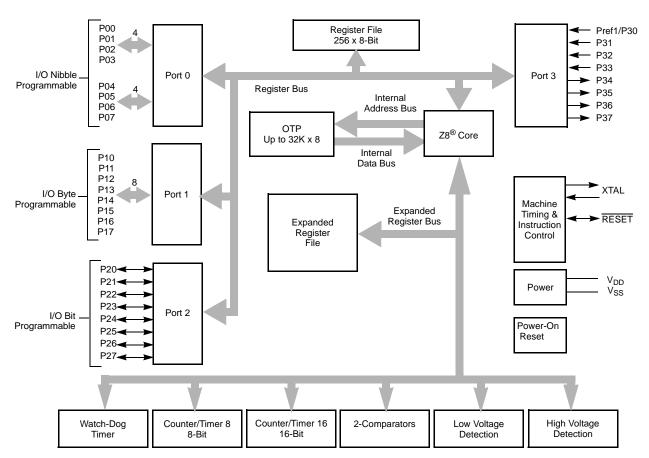
- Port 1: 0–3 pull-up transistors
- Port 1: 4-7 pull-up transistors
- Port 2: 0–7 pull-up transistors
- EPROM Protection
- WDT enabled at POR
- **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at V_{CC}=2 V.

General Description

The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).


To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 2.

Table 2. Power Connections

Connection	Circuit	Device
Power	V _{CC}	V_{DD}
Ground	GND	V _{SS}

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

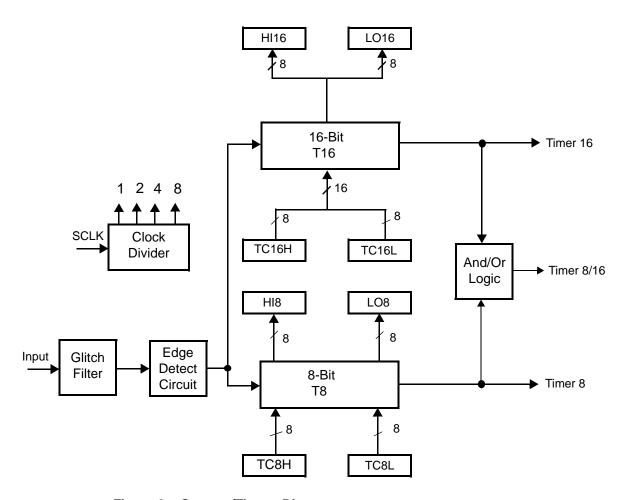


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

Table 8. DC Characteristics (Continued)

			T _A = 0°	C to +7	70°C			
Symbol	Parameter	V_{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mΑ	$V_{IN} = 0V$, V_{CC} at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μΑ	Same as above	3
		2.0			500	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current				10	μΑ	Measured at 1.3V	4
	(Low Voltage)							
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
	Protection						Ext. CLK Freq.	
V_{LVD}	Vcc Low Voltage			2.4		V		
	Detection							
V_{HVD}	Vcc High Voltage			2.7		V		
	Detection							

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- Oscillator stops when V_{CC} falls below V_{BO} limit.
 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

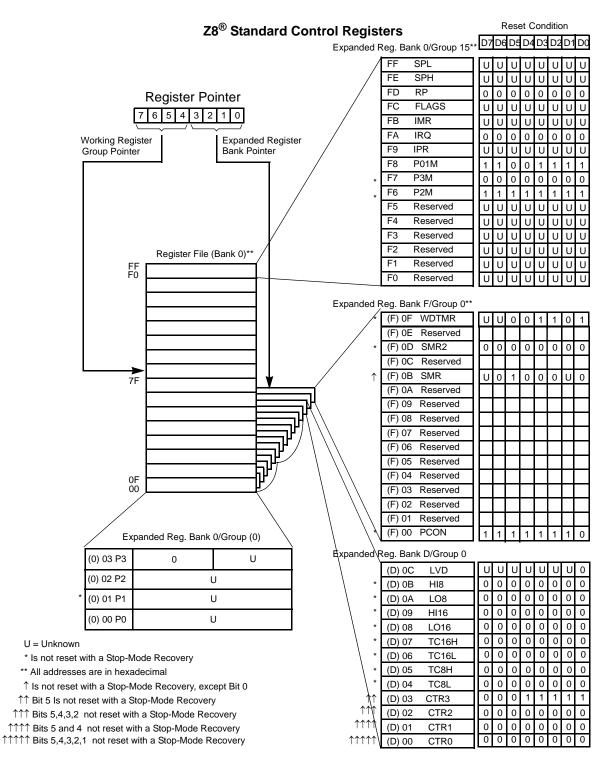


Figure 15. Expanded Register File Architecture

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\mathrm{H}}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{1\mathrm{H}}$ to $_{\mathrm{FH}}$ exchanges the lower 16 registers to an expanded register bank.

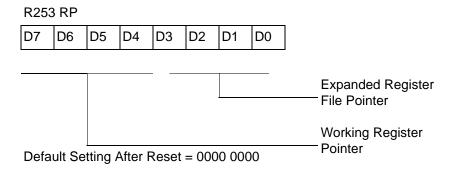


Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)

R253 RP = 00h

R0 = Port 0

R1 = Port 1

R2 = Port 2

R3 = Port 3

But if:

R253 RP = 0Dh

R0 = CTRL0

R1 = CTRL1

R2 = CTRL2

R3 = Reserved

Table 12. CTR0(D)00H Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0 1	Disable Time-Out Interrupt Enable Time-Out Interrupt
P34_Out	0	R/W	0* 1	P34 as Port Output T8 Output on P34

Note:

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

> The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

This bit defines the frequency of the input signal to T8.

^{*}Indicates the value upon Power-On Reset.

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 45.

Time Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16 Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 15 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 15. CTR3 (D)03H: T8/T16 Control Register

Field	Bit Position	Bit Position		Description	
T ₁₆ Enable	7	R	0*	Counter Disabled	
		R	1	Counter Enabled	
		W	0	Stop Counter	
		W	1	Enable Counter	
T ₈ Enable	-6	R	0*	Counter Disabled	
-		R	1	Counter Enabled	
		W	0	Stop Counter	
		W	1	Enable Counter	
Sync Mode	5	R/W	0**	Disable Sync Mode	
-			1	Enable Sync Mode	

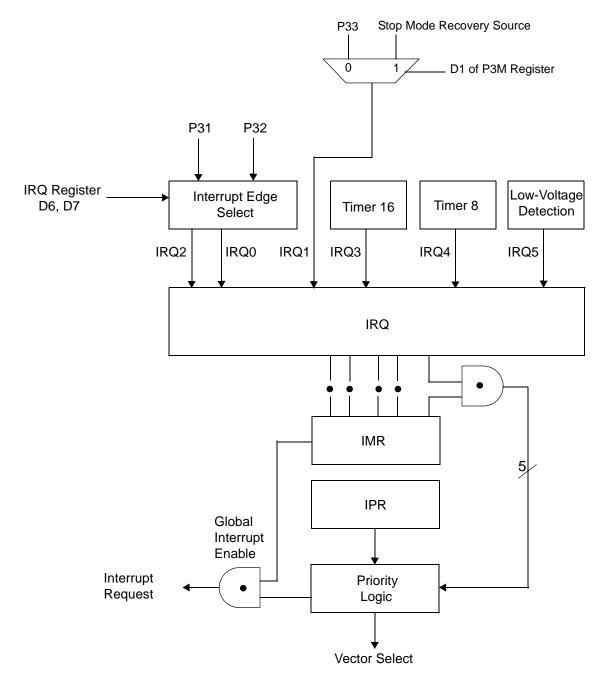


Figure 30. Interrupt Block Diagram

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

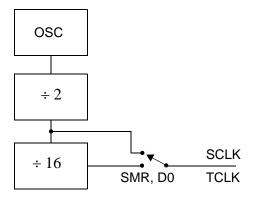


Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

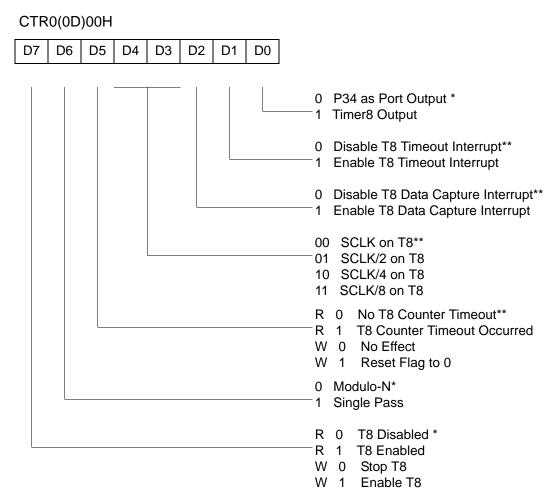
These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 19).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 18 lists and briefly describes the fields for this register.

Table 18. SMR2(F)0DH:Stop Mode Recovery Register 2*

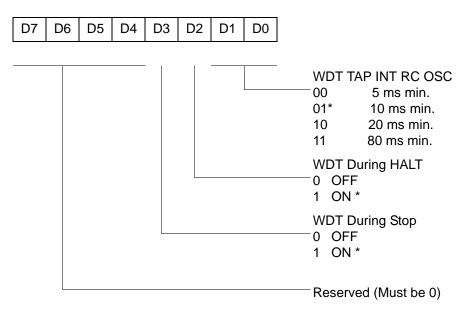
Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
·			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23-P20
			010	C. NAND of P27-P20
			011	D. NOR of P33-P31
			100	E. NAND of P33-P31
			101	F. NOR of P33-P31, P00, P07
			110	G. NAND of P33-P31, P00, P07
			111	H. NAND of P33-P31, P22-P20
Reserved	10		00	Reserved (Must be 0)


Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

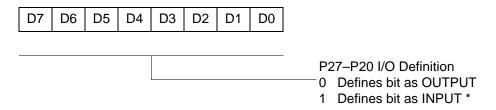


^{*} Default setting after reset

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

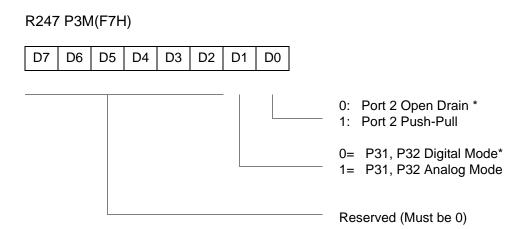
^{**}Default setting after reset. Not reset with Stop Mode recovery.

WDTMR(0F)0FH



^{*} Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)


Standard Control Registers

R246 P2M(F6H)

^{*} Default setting after reset

Figure 48. Port 2 Mode Register (F6H: Write Only)

^{*} Default setting after reset. Not reset with Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

 $P31\uparrow\downarrow$ $P32\uparrow\downarrow=11$

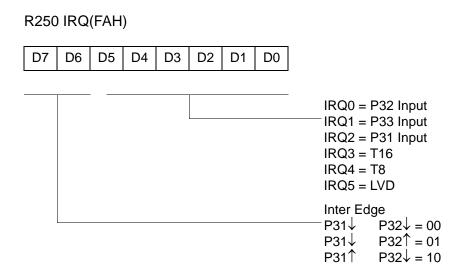
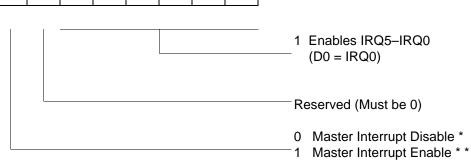
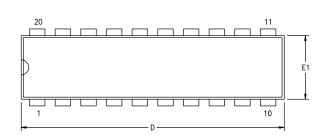



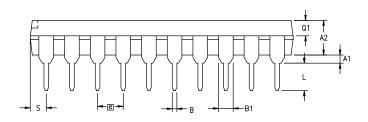
Figure 52. Interrupt Request Register (FAH: Read/Write)

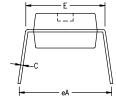
D7 D6 D5 D4 D3 D2 D1 D0



^{*} Default setting after reset

R251 IMR(FBH)


Figure 53. Interrupt Mask Register (FBH: Read/Write)


^{* *} Only by using EI, DI instruction; DI is required before changing the IMR register

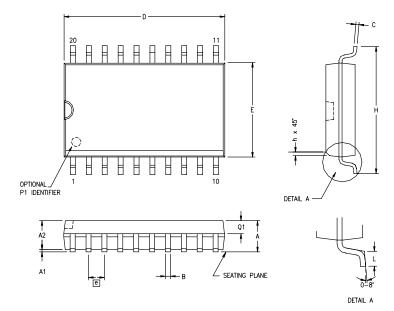
CAMBUI	SYMBOI MILLIMETER		INC	Н
STMIDOL	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
В	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
С	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
е	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065

CONTROLLING DIMENSIONS : INCH

SYMBOL

A1

A2


В

С

D

е

Figure 59. 20-Pin PDIP Package Diagram

h	0.30	0.40	.012	.016
L	0.60	1.00	.024	.039
Q1	0.97	1.07	.038	.042

MILLIMETER

MAX

2.65

0.30

2.44

0.30

12.95

7.60

MIN

.094

.004

.088

.009

496

.291

.050 BSC

MAX

.104

.012

.096

.018

.012

.510

.299

.016

MIN

2.40

0.10

2.24

0.36

0.23

12.60

7.40

1.27 BSC

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 60. 20-Pin SOIC Package Diagram

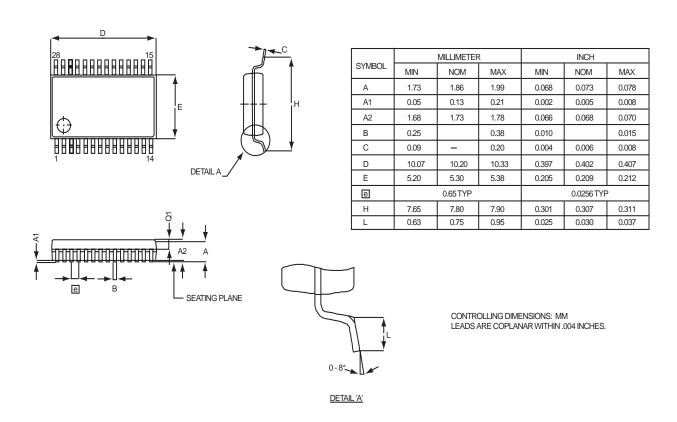


Figure 65. 28-Pin SSOP Package Diagram

4KB Standard Temperature: 0° to +70°C					
Part Number	Description	Part Number	Description		
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP		
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP		
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP		
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP		

4KB Extended Temperature: -40° to +105°C				
Part Number	Description	Part Number	Description	
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP	
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP	
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP	
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP	

4KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP	
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP	
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP	
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP	

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System

Example

M	port 1 configuration 18
memory, program 23	port 1 pin function 17
modulo-N mode	port 2 configuration 19
T16_OUT 45	port 2 pin function 18
T8_OUT 41	port 3 configuration 20
	port 3 pin function 19
	port 3counter/timer configuration 22
0	port configuration register 53
oscillator configuration 51	power connections 3
output circuit, counter/timer 47	power supply 5
	precharacterization product 95
	program memory 23
P	map 24
package information	
20-pin DIP package diagram 81	R
20-pin SSOP package diagram 82	
28-pin DIP package diagram 85	ratings, absolute maximum 10
28-pin SOIC package diagram 84	register 59
28-pin SSOP package diagram 86	CTR(D)01h 33
40-pin DIP package diagram 87	CTR0(D)00h 31
48-pin SSOP package diagram 88	CTR2(D)02h 35
pin configuration	CTR3(D)03h 37
20-pin DIP/SOIC/SSOP 5	flag 78
28-pin DIP/SOIC/SSOP 6	HI16(D)09h 30
40- and 48-pin 8	HI8(D)0Bh 30 interrupt priority 76
40-pin DIP 7	interrupt request 77
48-pin SSOP 8	interrupt request 77
pin functions	L016(D)08h 30
port 0 (P07 - P00) 16	L08(D)0Ah 30
port 0 (P17 - P10) 17	LVD(D)0Ch 63
port 0 configuration 17	pointer 78
port 1 configuration 18	port 0 and 1 75
port 2 (P27 - P20) 18	port 2 configuration 73
port 2 (P37 - P30) 19	port 3 mode 74
port 2 configuration 19	port configuration 53, 73
port 3 configuration 20	SMR2(F)0Dh 38
port 3 counter/timer configuration 22	stack pointer high 79
reset) 23	stack pointer low 79
XTAL1 (time-based input 16	stop mode recovery 55
XTAL2 (time-based output) 16	stop mode recovery 2 59
ping-pong mode 46	stop-mode recovery 71
port 0 configuration 17	stop-mode recovery 2 72
port 0 pin function 16	T16 control 67