E·XFL

Zilog - ZGP323LSH2008C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

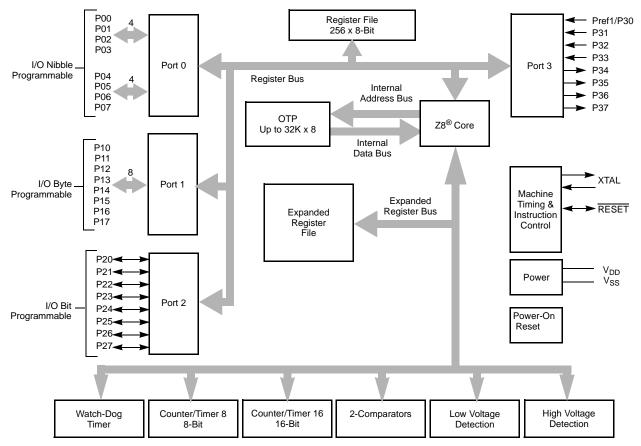
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

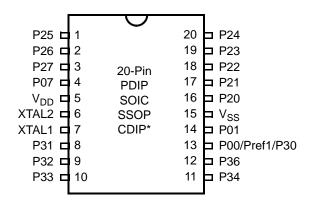
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2008c00tr

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 GPTM OTP MCU Family Product Specification

Table 2. Power Connections


Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin #	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34. P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

>

P25 1 P26 2 P27 3 P04 4 P05 5 P06 6 P07 7 V _{DD} 8 XTAL2 9 XTAL1 10 P31 11 P32 12 P33 13 P34 14	28-Pin PDIP SOIC SSOP CDIP*	28 □ P24 27 □ P23 26 □ P22 25 □ P21 24 □ P20 23 □ P03 22 □ V _{SS} 21 □ P02 20 □ P01 19 □ P00 18 □ Pref1/P30 17 □ P36 16 □ P37 15 □ P35
---	---	--

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identifica

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

		\bigcirc	
NC			40 □ NC
P25			39 🗖 P24
P26			38 🗖 P23
P27	□ 4		37 🗖 P22
P04	□ 5		36 🗖 P21
P05	□ 6	40-Pin	35 🗖 P20
P06	– 7	PDIP	34 🗖 P03
P14	□ 8	CDIP*	33 🗖 P13
P15	□ 9	ODI	32 🗖 P12
P07	1 0		31 🗖 VSS
VDD	– 11		30 🗖 P02
P16	1 2		39 🗖 P11
P17	1 3		28 🗖 P10
XTAL2	□ 14		27 🗖 P01
XTAL1	□ 15		26 🗖 P00
P31	1 6		25 🗖 Pref1/P30
P32	17		24 🗖 P36
P33	1 8		23 🗖 P37
P34	□ 19		22 🗖 P35
NC	20		21 🗖 RESET

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

12

			T _A = 0°	C to +	70°C			
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	$V_{IN} = 0V, V_{CC}$ at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μA	Same as above	3
		2.0			500	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current				10	μA	Measured at 1.3V	4
	(Low Voltage)							
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
212	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							
Notos:								

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

13

Table 9. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	25			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

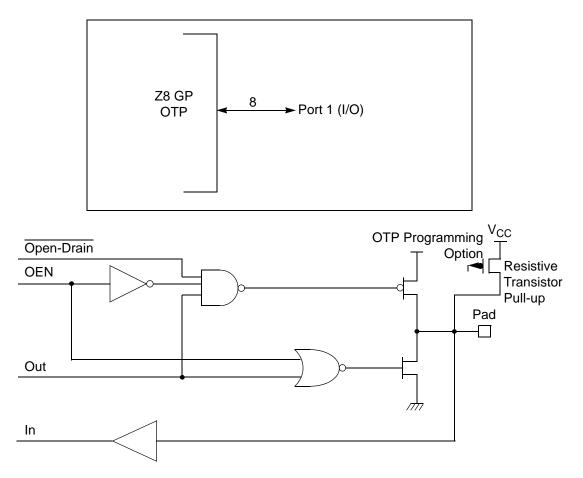


Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	T8	8,9	Internal
IRQ5	LVD	10,11	Internal

Table 16. Interrupt Types, Sources, and Vectors

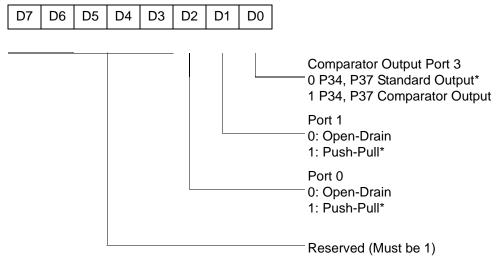
When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17.

IRQ		Interrupt Edge			
D7	D6	IRQ2 (P31)	IRQ0 (P32)		
0	0	F	F		
0	1	F	R		
1	0	R	F		
1	1	R/F	R/F		
Note: F = Falling Edge; R = Rising Edge					

Table 17. IRQ Register



NOP	; clear the pipeline
Stop	; enter Stop Mode
NOP	; clear the pipeline
HALT	; enter HALT Mode
	Stop

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

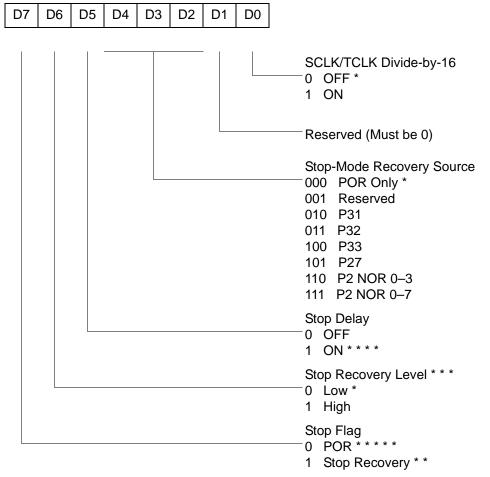
Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

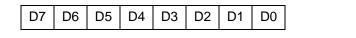
Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Z8 GP[™] OTP MCU Family Product Specification



CTR1(0D)01H D7 D6 D5 D3 D1 D0 D4 D2 Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially **Demodulation Mode** R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially **Demodulation Mode** R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 **Demodulation Mode** 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND **Demodulation Mode** 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT **Demodulation Mode** 0 P31 as Demodulator Input 1 P20 as Demodulator Input Transmit/Demodulation Mode 0 Transmit Mode * * Default setting after reset **Default setting after reset. Not reset with Stop Mode 1 Demodulation Mode recovery

SMR(0F)0BH



- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- **** Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

R254 SPH(FEH)

General-Purpose Register

Figure 56. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)

D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

Stack Pointer Low Byte (SP7–SP0)

Figure 57. Stack Pointer Low (FFH: Read/Write)

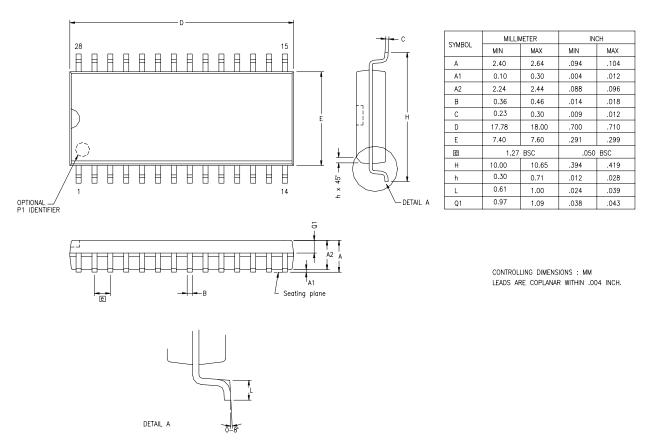
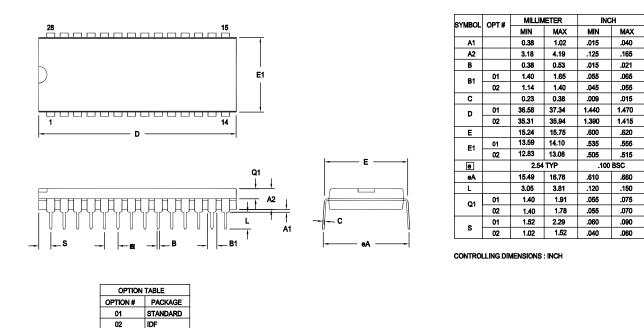
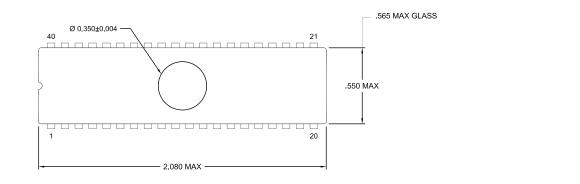



Figure 63. 28-Pin SOIC Package Diagram

Z8 GP[™] OTP MCU Family Product Specification



Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

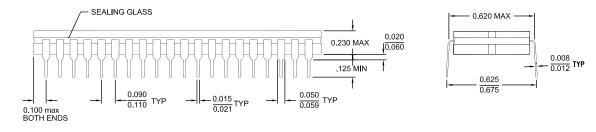
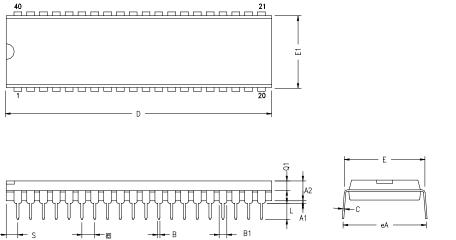



Figure 66. 40-Pin CDIP Package

MILLIMETER INCH SYMBOL MIN MAX MIN MAX .040 A1 0.51 .020 A2 3.94 .125 .155 3.18 В 0.38 0.53 .015 .021 B1 .040 .060 1.02 1.52 С 0.38 .009 .015 0.23 D 2.050 2.070 52.07 52.58 Ε 15.24 15.75 .600 .620 .100 TYP E1 13.59 .59 14.22 2.54 TYP .535 e .660 eA 15.49 16.76 .610 3.81 .120 .150 L 3.05 Q1 1.91 .075 1.40 .055 S .060 1.52 2.29 .090

Figure 67. 40-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

Ordering Information

32KB Standard Temperature: 0° to +70°C

	•		
Part Number	Description	Part Number	Description
ZGP323LSH4832C	48-pin SSOP 32K OTP	ZGP323LSS2832C	28-pin SOIC 32K OTP
ZGP323LSP4032C	40-pin PDIP 32K OTP	ZGP323LSH2032C	20-pin SSOP 32K OTP
ZGP323LSH2832C	28-pin SSOP 32K OTP	ZGP323LSP2032C	20-pin PDIP 32K OTP
ZGP323LSP2832C	28-pin PDIP 32K OTP	ZGP323LSS2032C	20-pin SOIC 32K OTP
ZGP323LSK2032E	20-pin CDIP 32K OTP	ZGP323LSK4032E	40-pin CDIP 32K OTP
		ZGP323LSK2832E	28-pin CDIP 32K OTP

32KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4832C	48-pin SSOP 32K OTP	ZGP323LES2832C	28-pin SOIC 32K OTP
ZGP323LEP4032C	40-pin PDIP 32K OTP	ZGP323LEH2032C	20-pin SSOP 32K OTP
ZGP323LEH2832C	28-pin SSOP 32K OTP	ZGP323LEP2032C	20-pin PDIP 32K OTP
ZGP323LEP2832C	28-pin PDIP 32K OTP	ZGP323LES2032C	20-pin SOIC 32K OTP

32KB Automotive Temperature: -40° to +125°C

	•	1			
Part Number	Description	Part Number	Description		
ZGP323LAH4832C	48-pin SSOP 32K OTP	ZGP323LAS2832C	28-pin SOIC 32K OTP		
ZGP323LAP4032C	40-pin PDIP 32K OTP	ZGP323LAH2032C	20-pin SSOP 32K OTP		
ZGP323LAH2832C	28-pin SSOP 32K OTP	ZGP323LAP2032C	20-pin PDIP 32K OTP		
ZGP323LAP2832C	28-pin PDIP 32K OTP	ZGP323LAS2032C	20-pin SOIC 32K OTP		
Note: Replace C wit	Note: Replace C with G for Lead-Free Packaging				

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP
ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP
ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP
ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP

16KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP
Note: Replace C with G for Lead-Free Packaging			

PS023702-1004

Z i L 0 G 92

4KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C

	•		
Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System