E·XFL

Zilog - ZGP323LSH2016C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2016c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

۷

ZiLOG

Figure 35. Stop Mode Recovery Source	57
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)	. 59
Figure 37. Watch-Dog Timer Mode Register (Write Only)	60
Figure 38. Resets and WDT	61
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted	d) 64
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) .	65
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)	. 67
Figure 42. T8/T16 Control Register (0D)03H: Read/Write	
(Except Where Noted)	68
Figure 43. Voltage Detection Register	69
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)	70
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	71
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only	/) 72
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	73
Figure 48. Port 2 Mode Register (F6H: Write Only)	73
Figure 49. Port 3 Mode Register (F7H: Write Only)	74
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	75
Figure 51. Interrupt Priority Register (F9H: Write Only)	76
Figure 52. Interrupt Request Register (FAH: Read/Write)	77
Figure 53. Interrupt Mask Register (FBH: Read/Write)	77
Figure 54. Flag Register (FCH: Read/Write)	78
Figure 55. Register Pointer (FDH: Read/Write)	78
Figure 56. Stack Pointer High (FEH: Read/Write)	79
Figure 57. Stack Pointer Low (FFH: Read/Write)	79
Figure 58. 20-Pin CDIP Package	80
Figure 59. 20-Pin PDIP Package Diagram	81
Figure 60. 20-Pin SOIC Package Diagram	81
Figure 61. 20-Pin SSOP Package Diagram	82
Figure 62. 28-Pin CDIP Package	83
Figure 63. 28-Pin SOIC Package Diagram	84
Figure 64. 28-Pin PDIP Package Diagram	85
Figure 65. 28-Pin SSOP Package Diagram	86
Figure 66. 40-Pin CDIP Package	87
Figure 67. 40-Pin PDIP Package Diagram	87
Figure 68. 48-Pin SSOP Package Design	88

12

T _A = 0°C to +70°C								
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	V _{IN} = 0V, V _{CC} at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μΑ	Same as above	3
		2.0			500	μA	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current (Low Voltage)				10	μΑ	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
BO	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

AC Characteristics

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

>

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

35

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 14 lists and briefly describes the fields for this register.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

Ca

Caution: To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57.

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)DH

D7	D6	D5	D4	D3	D2	D1	D0]
								Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07
								Reserved (Must be 0)
								0 Low * 1 High
								Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

CTR0(0D)00H

* Default setting after reset

**Default setting after reset. Not reset with Stop Mode recovery.

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

CTR2(0D)02H

Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

LVD(0D)0CH

* Default

Figure 43. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

SMR(0F)0BH

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- **** Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

R248 P01M(F8H)

* Default setting after reset; only P00, P01 and P07 are available in 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

Z8 GP[™] OTP MCU Family Product Specification

0.0.00		MILLIMETER		INCH		
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e		0.65 BSC			0.0256 BSC	;
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Н

0-"8

DETAIL A

Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

>

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP
ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP
ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP
ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP

16KB Automotive Temperature: -40° to +125°C

Dort Number	Description	Dort Number	Description				
Part Number	Description	Part Number	Description				
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP				
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP				
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP				
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP				
Note: Replace C with G for Lead-Free Packaging							

PS023702-1004

Z8 GP[™] OTP MCU Family Product Specification

T8 and T16 common control functions 65 T8/T16 control 68 TC16H(D)07h 30 TC16L(D)06h 31 TC8 control 64 TC8H(D)05h 31 TC8L(D)04h 31 voltage detection 69 watch-dog timer 73 register description Counter/Timer2 LS-Byte Hold 31 Counter/Timer2 MS-Byte Hold 30 Counter/Timer8 Control 31 Counter/Timer8 High Hold 31 Counter/Timer8 Low Hold 31 CTR2 Counter/Timer 16 Control 35 CTR3 T8/T16 Control 37 Stop Mode Recovery2 38 T16 Capture LO 30 T8 and T16 Common functions 33 T8_Capture_HI 30 T8 Capture LO 30 register file 28 expanded 24 register pointer 27 detail 29 reset pin function 23 resets and WDT 61

S

SCLK circuit 56 single-pass mode T16_OUT 45 T8_OUT 41 stack 29 standard test conditions 10 standby modes 1 stop instruction, counter/timer 52 stop mode recovery 2 register 59 source 57 stop mode recovery 2 59 stop mode recovery register 55

Т

T16 transmit mode 44 T16_Capture_HI 30 T8 transmit mode 38 T8_Capture_HI 30 test conditions, standard 10 test load diagram 10 timing diagram, AC 14 transmit mode flowchart 39

V

VCC 5 voltage brown-out/standby 62 detection and flags 63 voltage detection register 69

W

watch-dog timer mode registerwatch-dog timer mode register 60 time select 61

Χ

XTAL1 5 XTAL1 pin function 16 XTAL2 5 XTAL2 pin function 16