E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2032c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P25 1 P26 2 P27 3 P04 4 P05 5 P06 6 P07 7 V _{DD} 8 XTAL2 9 XTAL1 10 P31 11 P32 12 P33 13 P34 14	28-Pin PDIP SOIC SSOP CDIP*	28 □ P24 27 □ P23 26 □ P22 25 □ P21 24 □ P20 23 □ P03 22 □ V _{SS} 21 □ P02 20 □ P01 19 □ P00 18 □ Pref1/P30 17 □ P36 16 □ P37 15 □ P35
---	---	--

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identifica

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

Z8 GP[™] OTP MCU Family Product Specification

40-Pin PDIP/CDIP* #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC

Table 5. 40- and 48-Pin Configuration (Continued)

Absolute Maximum Ratings

Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 6. Absolute Maximum Ratings

Parameter	Minimum	Maximun	n Units	Notes
Ambient temperature under bias	0	+70	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V_{SS}	-0.3	+5.5	V	1
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V_{DD} or out of V_{SS}		75	mA	
Notes:				

This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

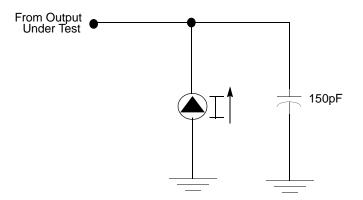


Figure 7. Test Load Diagram

12

			T _A = 0°	C to +	70°C			
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	$V_{IN} = 0V, V_{CC}$ at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μA	Same as above	3
		2.0			500	μΑ	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current				10	μΑ	Measured at 1.3V	4
	(Low Voltage)							
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
212	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							
Notos:								

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

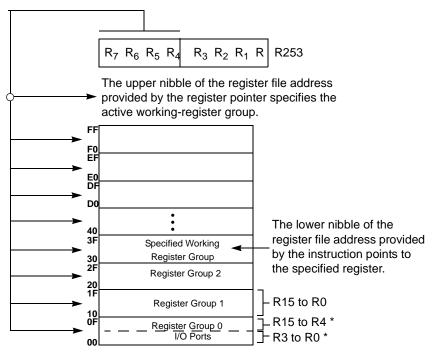
Z8 GP[™] OTP MCU Family Product Specification

Lessting of the	700	Not Accessible
Location of 32	2768	On-Chip
instruction		ROM
executed after RESET		
	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
Interrupt Vector	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	➡ IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the


ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

>

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

* RP = 00: Selects Register Bank 0, Working Register Group 0

Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

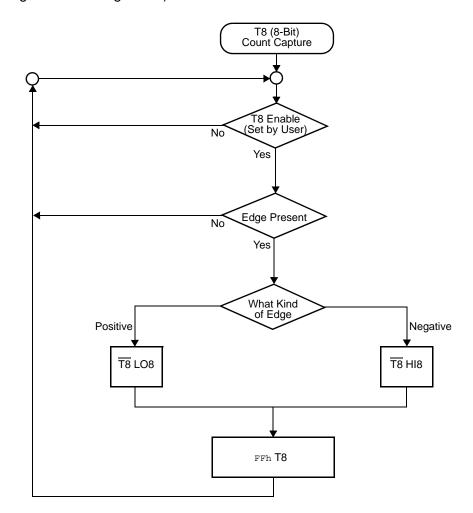


Figure 23. Demodulation Mode Count Capture Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

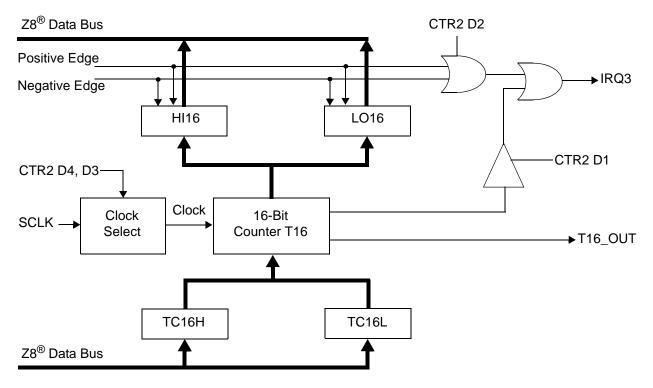


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

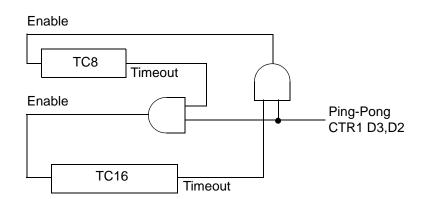
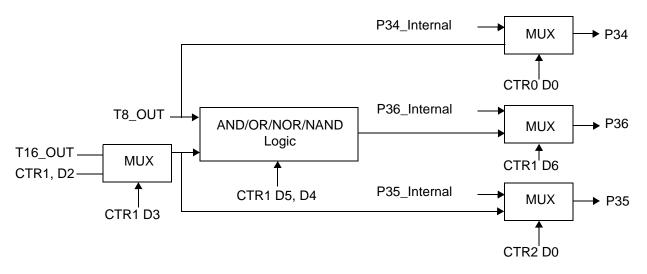
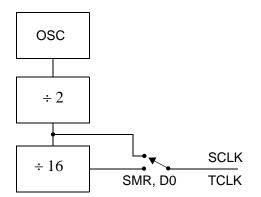
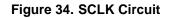



Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode


First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.



The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 19).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 18 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Table 18. SMR2(F)0DH:Stop Mode Recovery Register 2*

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

Table 19. Stop Mode Recovery Source

SMR	:432		Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

>

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)DH

D7	D6	D5	D4	D3	D2	D1	D0]
								Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07
								111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0)
								Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

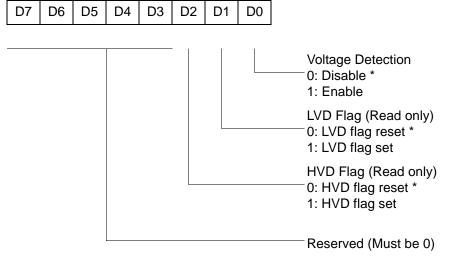
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

Z8 GP[™] OTP MCU Family Product Specification

CTR1(0D)01H D7 D6 D5 D3 D1 D0 D4 D2 Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially **Demodulation Mode** R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially **Demodulation Mode** R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 **Demodulation Mode** 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND **Demodulation Mode** 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT **Demodulation Mode** 0 P31 as Demodulator Input 1 P20 as Demodulator Input Transmit/Demodulation Mode 0 Transmit Mode * * Default setting after reset **Default setting after reset. Not reset with Stop Mode 1 Demodulation Mode recovery



Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

LVD(0D)0CH

* Default

Figure 43. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

Ordering Information

32KB Standard Temperature: 0° to +70°C

	•		
Part Number	Description	Part Number	Description
ZGP323LSH4832C	48-pin SSOP 32K OTP	ZGP323LSS2832C	28-pin SOIC 32K OTP
ZGP323LSP4032C	40-pin PDIP 32K OTP	ZGP323LSH2032C	20-pin SSOP 32K OTP
ZGP323LSH2832C	28-pin SSOP 32K OTP	ZGP323LSP2032C	20-pin PDIP 32K OTP
ZGP323LSP2832C	28-pin PDIP 32K OTP	ZGP323LSS2032C	20-pin SOIC 32K OTP
ZGP323LSK2032E	20-pin CDIP 32K OTP	ZGP323LSK4032E	40-pin CDIP 32K OTP
		ZGP323LSK2832E	28-pin CDIP 32K OTP

32KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4832C	48-pin SSOP 32K OTP	ZGP323LES2832C	28-pin SOIC 32K OTP
ZGP323LEP4032C	40-pin PDIP 32K OTP	ZGP323LEH2032C	20-pin SSOP 32K OTP
ZGP323LEH2832C	28-pin SSOP 32K OTP	ZGP323LEP2032C	20-pin PDIP 32K OTP
ZGP323LEP2832C	28-pin PDIP 32K OTP	ZGP323LES2032C	20-pin SOIC 32K OTP

32KB Automotive Temperature: -40° to +125°C

	•	1	
Part Number	Description	Part Number	Description
ZGP323LAH4832C	48-pin SSOP 32K OTP	ZGP323LAS2832C	28-pin SOIC 32K OTP
ZGP323LAP4032C	40-pin PDIP 32K OTP	ZGP323LAH2032C	20-pin SSOP 32K OTP
ZGP323LAH2832C	28-pin SSOP 32K OTP	ZGP323LAP2032C	20-pin PDIP 32K OTP
ZGP323LAP2832C	28-pin PDIP 32K OTP	ZGP323LAS2032C	20-pin SOIC 32K OTP
Note: Replace C with G for Lead-Free Packaging			

Z i L 0 G 92

4KB Standard Temperature: 0° to +70°C

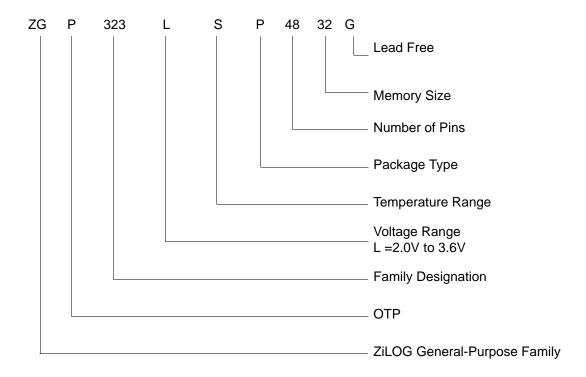
Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C

	•		
Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP


Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System

Example

Z8 GP[™] OTP MCU Family Product Specification

Index

Numerics

16-bit counter/timer circuits 44 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOICpackage diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 8-bit counter/timer circuits 40

Α

absolute maximum ratings 10 AC characteristics 14 timing diagram 14 address spaces, basic 2 architecture 2 expanded register file 26

В

basic address spaces 2 block diagram, ZLP32300 functional 3

С

capacitance 11 characteristics AC 14 DC 11 clock 51 comparator inputs/outputs 23 configuration port 0 17 port 1 18 port 2 19 port 3 20 port 3 counter/timer 22 counter/timer 16-bit circuits 44 8-bit circuits 40 brown-out voltage/standby 62 clock 51 demodulation mode count capture flowchart 42 demodulation mode flowchart 43 EPROM selectable options 62 glitch filter circuitry 38 halt instruction 52 input circuit 38 interrupt block diagram 49 interrupt types, sources and vectors 50 oscillator configuration 51 output circuit 47 ping-pong mode 46 port configuration register 53 resets and WDT 61 SCLK circuit 56 stop instruction 52 stop mode recovery register 55 stop mode recovery register 2 59 stop mode recovery source 57 T16 demodulation mode 45 T16 transmit mode 44 T16_OUT in modulo-N mode 45 T16 OUT in single-pass mode 45 T8 demodulation mode 41 T8 transmit mode 38 T8 OUT in modulo-N mode 41 T8 OUT in single-pass mode 41 transmit mode flowchart 39 voltage detection and flags 63 watch-dog timer mode register 60 watch-dog timer time select 61 CTR(D)01h T8 and T16 Common Functions 33