Zilog - ZGP323LSH2804C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2804c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Port 1: 0–3 pull-up transistors
- Port 1: 4–7 pull-up transistors
- Port 2: 0–7 pull-up transistors
- EPROM Protection
- WDT enabled at POR
- **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at $V_{CC}=2$ V.

General Description

The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to registermapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of userselectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, "", are active Low. For example, B/\overline{W} , in which WORD is active Low, and \overline{B}/W , in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 2.

		\bigcirc	
NC			40 ⊐ NC
P25			39 □ P24
P26			38 🗖 P23
P27	□ 4		37 🗖 P22
P04	□ 5		36 🗖 P21
P05	□ 6	40-Pin	35 🗖 P20
P06	– 7	PDIP	34 🗖 P03
P14	□ 8	CDIP*	33 🗖 P13
P15	□ 9	ODI	32 🗖 P12
P07	1 0		31 🗖 VSS
VDD	– 11		30 🗖 P02
P16	1 2		39 🗖 P11
P17	□ 13		28 🗖 P10
XTAL2	□ 14		27 🗖 P01
XTAL1	□ 15		26 🗖 P00
P31	1 6		25 🗖 Pref1/P30
P32	17		24 🗖 P36
P33	1 8		23 🗖 P37
P34	□ 19		22 🗖 P35
NC	20		21 🗖 RESET

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

Z8 GPTM OTP MCU Family Product Specification

	i				
			\bigcirc	40	
NC		1		48	I NC
P25	С	2		47	I NC
P26		3		46	I P24
P27		4		45	P23
P04		5		44	P22
N/C		6		43	I P21
P05		7		42	I P20
P06		8		41	P03
P14		9		40	I P13
P15		10		39	I P12
P07		11	40 Dia	38	VSS
VDD		12	48-Pin SSOP	37	VSS
VDD		13	330F	36	N/C
N/C		14		35	P02
P16		15		34	I P11
P17		16		33 =	I P10
XTAL2		17		32	P01
XTAL1		18		31	I P00
P31		19		30	N/C
P32		20		29	PREF1/P30
P33		21		28	P36
P34		22		27	I P37
NC		23		26	I P35
VSS		24		25	RESET

Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP/CDIP* #	48-Pin SSOP #	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11
32	39	P12

Z8 GPTM OTP MCU Family Product Specification

11

ZILOG

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum		
Input capacitance	12pF		
Output capacitance	12pF		
I/O capacitance	12pF		
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND			

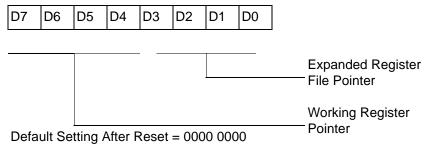
DC Characteristics

			T _A = 0°C	to +7	′0°C			
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 1.0 \text{mA}$ $I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V		
۱ _{IL}	Input Leakage	2.0-3.6	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
IOL	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
ICC	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 2 1, 2

Z8 GP[™] OTP MCU Family Product Specification

Lessting of the	700	Not Accessible
Location of 32	2768	On-Chip
instruction		ROM
executed after RESET		
	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
Interrupt Vector	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	➡ IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Figure 14. Program Memory Map (32K OTP)


Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

27

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\rm H}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2R3 = Reserved


The counter/timers are mapped into ERF group D. Access is easily performed using the following:

LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	R0,#xx	;	load CTRL0
LD	1, #xx	;	load CTRL1
LD	R1, 2	;	$CTRL2 \rightarrow CTRL1$
LD	RP, #0Dh	;	Select ERF D
for access to bank D	,	,	
		;	(working
register group 0)			
LD	RP, #7Dh	;	Select
expanded register bank	D and working	;	register
group 7 of bank 0 for a	ccess.		
LD	71h, 2		
; CTRL2 \rightarrow register 71h			
LD	R1, 2		
; CTRL2 \rightarrow register 71h			

Register File

>

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 12) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

31

ZILOG

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06H

Field	Bit Position		Description
T16_Data_LO	[7:0]	R/W	Data

Counter/Timer8 High Hold Register—TC8H(D)05H

Field Bit Position			Description
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field	Bit Position		Description
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 12 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0	Modulo-N
-			1	Single Pass
Time_Out	5	R/W	0	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0	SCLK
			0 1	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0	Disable Data Capture Interrupt
			1	Enable Data Capture Interrupt

Table 12. CTR0(D)00H Counter/Timer8 Control Register

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

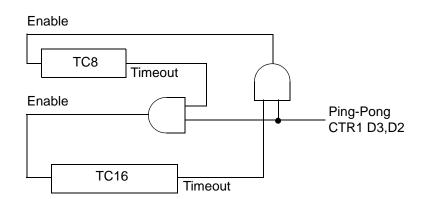
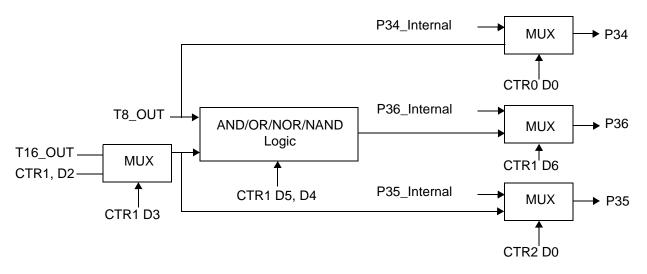



Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	T8	8,9	Internal
IRQ5	LVD	10,11	Internal

Table 16. Interrupt Types, Sources, and Vectors

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17.

I	RQ	Interrupt Edge				
D7	D6	IRQ2 (P31)	IRQ0 (P32)			
0	0	F	F			
0	1	F	R			
1	0	R	F			
1	1	R/F	R/F			
Note	: F = Fa	Illing Edge; R = R	lising Edge			

Table 17. IRQ Register

Table 19. Stop Mode Recovery Source

SMR:432			Operation				
D4	D3	D2	Description of Action				
0	0	0	POR and/or external reset recovery				
0	0	1	Reserved				
0	1	0	P31 transition				
0	1	1	P32 transition				
1	0	0	P33 transition				
1	0	1	P27 transition				
1	1	0	Logical NOR of P20 through P23				
1	1	1	Logical NOR of P20 through P27				

>

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

CTR3(0D)03H

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved No effect when written Always reads 11111
								Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode
								T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled W0 Stop T ₈ W1 Enable T ₈
								T ₁₆ Enable R 0* T ₁₆ Disabled R 1 T ₁₆ Enabled W 0 Stop T ₁₆ W 1 Enable T ₁₆

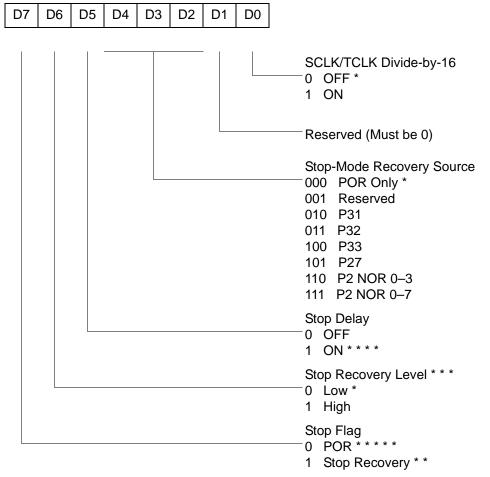
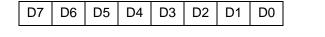

* Default setting after reset. ** Default setting after reset. Not reset with Stop Mode recovery.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

SMR(0F)0BH



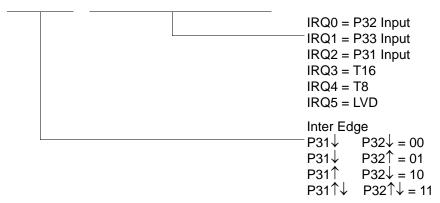

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- **** Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

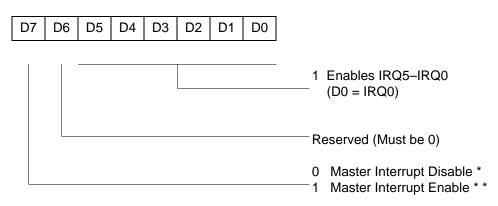
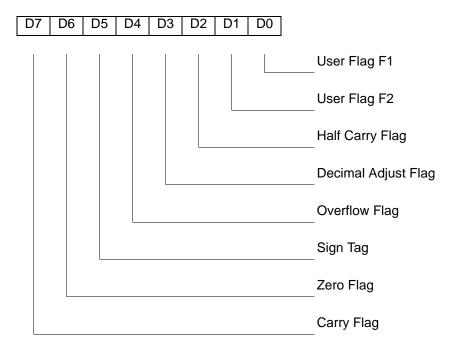

R250 IRQ(FAH)

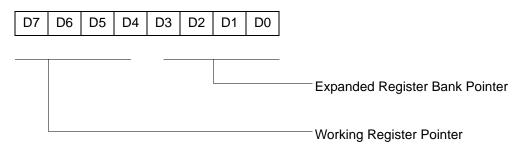
Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)


* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register

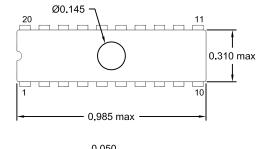
Figure 53. Interrupt Mask Register (FBH: Read/Write)

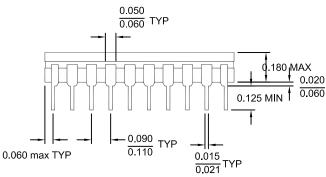


R252 Flags(FCH)

Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)


Default setting after reset = 0000 0000


Figure 55. Register Pointer (FDH: Read/Write)

Package Information

Package information for all versions of Z8 GPTM OTP MCU Family are depicted in Figures 58 through Figure 68.

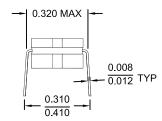
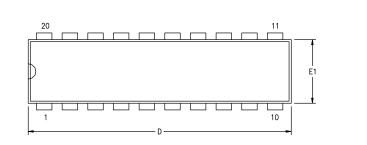
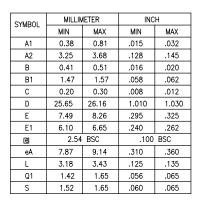




Figure 58. 20-Pin CDIP Package

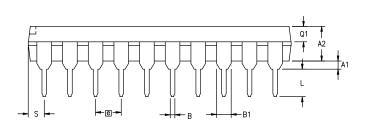
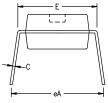



Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

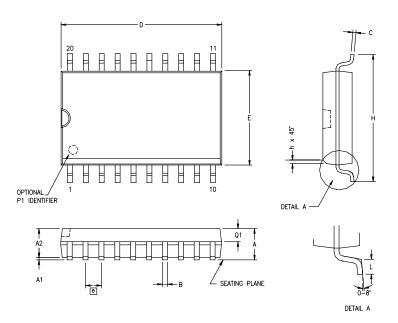


Figure 60. 20-Pin SOIC Package Diagram

SYMBOL	MILL	IMETER	INCH		
	MIN	MAX	MIN	MAX	
А	2.40	2.65	.094	.104	
A1	0.10	0.30	.004	.012	
A2	2.24	2.44	.088	.096	
в	0.36	0.46	.014	.018	
С	0.23	0.30	.009	.012	
D	12.60	12.95	.496	.510	
E	7.40	7.60	.291	.299	
е	1.27	BSC	.050	BSC	
н	10.00	10.65	.394	.419	
h	0.30	0.40	.012	.016	
L	0.60	1.00	.024	.039	
Q1	0.97	1.07	.038	.042	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Z8 GP[™] OTP MCU Family Product Specification

Index

Numerics

16-bit counter/timer circuits 44 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOICpackage diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 8-bit counter/timer circuits 40

Α

absolute maximum ratings 10 AC characteristics 14 timing diagram 14 address spaces, basic 2 architecture 2 expanded register file 26

В

basic address spaces 2 block diagram, ZLP32300 functional 3

С

capacitance 11 characteristics AC 14 DC 11 clock 51 comparator inputs/outputs 23 configuration port 0 17 port 1 18 port 2 19 port 3 20 port 3 counter/timer 22 counter/timer 16-bit circuits 44 8-bit circuits 40 brown-out voltage/standby 62 clock 51 demodulation mode count capture flowchart 42 demodulation mode flowchart 43 EPROM selectable options 62 glitch filter circuitry 38 halt instruction 52 input circuit 38 interrupt block diagram 49 interrupt types, sources and vectors 50 oscillator configuration 51 output circuit 47 ping-pong mode 46 port configuration register 53 resets and WDT 61 SCLK circuit 56 stop instruction 52 stop mode recovery register 55 stop mode recovery register 2 59 stop mode recovery source 57 T16 demodulation mode 45 T16 transmit mode 44 T16_OUT in modulo-N mode 45 T16 OUT in single-pass mode 45 T8 demodulation mode 41 T8 transmit mode 38 T8 OUT in modulo-N mode 41 T8 OUT in single-pass mode 41 transmit mode flowchart 39 voltage detection and flags 63 watch-dog timer mode register 60 watch-dog timer time select 61 CTR(D)01h T8 and T16 Common Functions 33

Z8 GP[™] OTP MCU Family Product Specification

D

DC characteristics 11 demodulation mode count capture flowchart 42 flowchart 43 T16 45 T8 41 description functional 23 general 2 pin 4

Ε

EPROM selectable options 62 expanded register file 24 expanded register file architecture 26 expanded register file control registers 69 flag 78 interrupt mask register 77 interrupt priority register 76 interrupt request register 77 port 0 and 1 mode register 75 port 2 configuration register 73 port 3 mode register 74 port configuration register 73 register pointer 78 stack pointer high register 79 stack pointer low register 79 stop-mode recovery register 71 stop-mode recovery register 2 72 T16 control register 67 T8 and T16 common control functions register 65 T8/T16 control register 68 TC8 control register 64 watch-dog timer register 73

F

features standby modes 1 functional description counter/timer functional blocks 38 CTR(D)01h register 33 CTR0(D)00h register 31 CTR2(D)02h register 35 CTR3(D)03h register 37 expanded register file 24 expanded register file architecture 26 HI16(D)09h register 30 HI8(D)0Bh register 30 L08(D)0Ah register 30 L0I6(D)08h register 30 program memory map 24 **RAM 23** register description 63 register file 28 register pointer 27 register pointer detail 29 SMR2(F)0D1h register 38 stack 29 TC16H(D)07h register 30 TC16L(D)06h register 31 TC8H(D)05h register 31 TC8L(D)04h register 31

G

glitch filter circuitry 38

Η

halt instruction, counter/timer 52

I

input circuit 38 interrupt block diagram, counter/timer 49 interrupt types, sources and vectors 50

L

low-voltage detection register 63