Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 24 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323lsh2808c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Port 1: 0–3 pull-up transistors Port 1: 4–7 pull-up transistors Port 2: 0–7 pull-up transistors EPROM Protection WDT enabled at POR **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at V_{CC}=2 V. ### **General Description** The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors. The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications. There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D). To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages. Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low. Power connections use the conventional descriptions listed in Table 2. Table 5. 40- and 48-Pin Configuration (Continued) | 40-Pin PDIP/CDIP* # | 48-Pin SSOP# | Symbol | |---------------------|--------------|-----------------| | 33 | 40 | P13 | | 8 | 9 | P14 | | 9 | 10 | P15 | | 12 | 15 | P16 | | 13 | 16 | P17 | | 35 | 42 | P20 | | 36 | 43 | P21 | | 37 | 44 | P22 | | 38 | 45 | P23 | | 39 | 46 | P24 | | 2 | 2 | P25 | | 3 | 3 | P26 | | 4 | 4 | P27 | | 16 | 19 | P31 | | 17 | 20 | P32 | | 18 | 21 | P33 | | 19 | 22 | P34 | | 22 | 26 | P35 | | 24 | 28 | P36 | | 23 | 27 | P37 | | 20 | 23 | NC | | 40 | 47 | NC | | 1 | 1 | NC | | 21 | 25 | RESET | | 15 | 18 | XTAL1 | | 14 | 17 | XTAL2 | | 11 | 12, 13 | V _{DD} | | 31 | 24, 37, 38 | V _{SS} | | 25 | 29 | Pref1/P30 | | | 48 | NC | # Capacitance Table 7 lists the capacitances. Table 7. Capacitance | Parameter | Maximum | | | |--|---------|--|--| | Input capacitance | 12pF | | | | Output capacitance | 12pF | | | | I/O capacitance | 12pF | | | | Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, $f = 1.0$ MHz, unmeasured pins returned to GNE | | | | ## **DC Characteristics** Table 8. DC Characteristics | T _A = 0°C to +70°C | | | | | | | | | |-------------------------------|---|------------|----------------------|-----|--------------------------|----------|--|--------------| | Symbol | Parameter | v_{cc} | Min | Тур | Max | Units | Conditions | Notes | | V _{CC} | Supply Voltage | | 2.0 | | 3.6 | V | See Note 5 | 5 | | V _{CH} | Clock Input High
Voltage | 2.0-3.6 | 0.8 | | V _{CC} +0.3 | V | Driven by External
Clock Generator | | | V _{CL} | Clock Input Low
Voltage | 2.0-3.6 | V _{SS} -0.3 | | 0.5 | V | Driven by External
Clock Generator | | | V _{IH} | Input High Voltage | 2.0-3.6 | 0.7 V _{CC} | | V _{CC} +0.3 | V | | | | V _{IL} | Input Low Voltage | 2.0-3.6 | V _{SS} -0.3 | | 0.2 V _{CC} | V | | | | V _{OH1} | Output High Voltage | 2.0-3.6 | V _{CC} -0.4 | | | V | $I_{OH} = -0.5$ mA | | | V _{OH2} | Output High Voltage
(P36, P37, P00, P01) | 2.0-3.6 | V _{CC} -0.8 | | | V | $I_{OH} = -7 \text{mA}$ | | | V _{OL1} | Output Low Voltage | 2.0-3.6 | | | 0.4 | V | $I_{OL} = 1.0$ mA
$I_{OL} = 4.0$ mA | | | V _{OL2} | Output Low Voltage
(P00, P01, P36, P37) | 2.0-3.6 | | | 8.0 | V | I _{OL} = 10mA | | | V _{OFFSET} | Comparator Input
Offset Voltage | 2.0-3.6 | | | 25 | mV | | | | V _{REF} | Comparator
Reference
Voltage | 2.0-3.6 | 0 | | V _{DD}
-1.75 | V | | | | I _{IL} | Input Leakage | 2.0-3.6 | –1 | | 1 | μΑ | V _{IN} = 0V, V _{CC}
Pull-ups disabled | | | l _{OL} | Output Leakage | 2.0-3.6 | -1 | | 1 | μΑ | $V_{IN} = 0V, V_{CC}$ | | | Icc | Supply Current | 2.0
3.6 | | | 10
15 | mA
mA | at 8.0 MHz
at 8.0 MHz | 1, 2
1, 2 | **Table 10. AC Characteristics** | | | T _A =0°C to +70°C
8.0MHz | | | | | Watch-Dog
Timer | | |----|------------------|--|--|---------------------|---------|----------------------|--------------------|------------------------------| | No | Symbol | ol Parameter | V _{CC} | Minimum | Maximum | Units | Notes | Mode
Register
(D1, D0) | | 1 | ТрС | Input Clock Period | 2.0-3.6 | 121 | DC | ns | 1 | | | 2 | TrC,TfC | Clock Input Rise and Fall Times | 2.0-3.6 | | 25 | ns | 1 | | | 3 | TwC | Input Clock Width | 2.0-3.6 | 37 | | ns | 1 | | | 4 | TwTinL | Timer Input
Low Width | 2.0
3.6 | 100
70 | | ns | 1 | | | 5 | TwTinH | Timer Input High
Width | 2.0-3.6 | 3ТрС | | | 1 | | | 6 | TpTin | Timer Input Period | 2.0-3.6 | 8ТрС | | | 1 | | | 7 | TrTin,TfTin | Timer Input Rise and Fall Timers | 2.0-3.6 | | 100 | ns | 1 | | | 8 | TwlL | Interrupt Request
Low Time | 2.0
3.6 | 100
70 | | ns | 1, 2 | | | 9 | TwlH | Interrupt Request
Input High Time | 2.0-3.6 | 5TpC | | | 1, 2 | | | 10 | Twsm | Stop-Mode
Recovery Width | 2.0-3.6 | 12 | | ns | 3 | | | | | Spec | | 10TpC | | | 4 | | | 11 | Tost | Oscillator
Start-Up Time | 2.0-3.6 | | 5TpC | | 4 | | | 12 | Twdt | Watch-Dog Timer
Delay Time | 2.0-3.6
2.0-3.6
2.0-3.6
2.0-3.6 | 5
10
20
80 | | ms
ms
ms
ms | | 0, 0
0, 1
1, 0
1, 1 | | 13 | T _{POR} | Power-On Reset | 2.0-3.6 | 2.5 | 10 | ms | | | - 1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31). - 3. SMR D5 = 1. - 4. SMR D5 = 0. Figure 13. Port 3 Counter/Timer Output Configuration ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank. **Note:** An expanded register bank is also referred to as an expanded register group (see Figure 15). Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued) | Field | Bit Position | | Value | Description | |-------------------|--------------|-----|-------|------------------------| | Transmit_Submode/ | 32 | R/W | | Transmit Mode | | Glitch_Filter | | | 00* | Normal Operation | | | | | 01 | Ping-Pong Mode | | | | | 10 | T16_Out = 0 | | | | | 11 | T16_Out = 1 | | | | | | Demodulation Mode | | | | | 00* | No Filter | | | | | 01 | 4 SCLK Cycle | | | | | 10 | 8 SCLK Cycle | | | | | 11 | Reserved | | Initial_T8_Out/ | 1- | | | Transmit Mode | | Rising Edge | | R/W | 0* | T8_OUT is 0 Initially | | | | | 1 | T8_OUT is 1 Initially | | | | | | Demodulation Mode | | | | R | 0* | No Rising Edge | | | | | 1 | Rising Edge Detected | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | Initial_T16_Out/ | 0 | | | Transmit Mode | | Falling_Edge | | R/W | 0* | T16_OUT is 0 Initially | | | | | 1 | T16_OUT is 1 Initially | | | | | | Demodulation Mode | | | | R | 0* | No Falling Edge | | | | | 1 | Falling Edge Detected | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | #### Note: #### Mode If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode. #### P36_Out/Demodulator_Input In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16. In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31. If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input. ^{*}Default at Power-On Reset. ^{**}Default at Power-On Reset.Not reset with Stop Mode recovery. Table 14. CTR2(D)02H: Counter/Timer16 Control Register | Field | Bit Position | | Value | Description | |------------------|--------------|-----|-------|---------------------------| | T16_Enable | 7 | R | 0* | Counter Disabled | | | | | 1 | Counter Enabled | | | | W | 0 | Stop Counter | | | | | 1 | Enable Counter | | Single/Modulo-N | -6 | R/W | | Transmit Mode | | | | | 0* | Modulo-N | | | | | 1 | Single Pass | | | | | | Demodulation Mode | | | | | 0 | T16 Recognizes Edge | | | | | 1 | T16 Does Not Recognize | | | | | | Edge | | Time_Out | 5 | R | 0* | No Counter Timeout | | | | | 1 | Counter Timeout | | | | | | Occurred | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | T16 _Clock | 43 | R/W | 00** | SCLK | | | | | 01 | SCLK/2 | | | | | 10 | SCLK/4 | | | | | 11 | SCLK/8 | | Capture_INT_Mask | 2 | R/W | 0** | Disable Data Capture Int. | | | | | 1 | Enable Data Capture Int. | | Counter_INT_Mask | 1- | R/W | 0 | Disable Timeout Int. | | | | | 1 | Enable Timeout Int. | | P35_Out | 0 | R/W | 0* | P35 as Port Output | | | | | 1 | T16 Output on P35 | #### Note: #### T16_Enable This field enables T16 when set to 1. #### Single/Modulo-N In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached. ^{*}Indicates the value upon Power-On Reset. ^{**}Indicates the value upon Power-On Reset.Not reset with Stop Mode recovery. #### **T16 Transmit Mode** In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11. When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25. Figure 25. 16-Bit Counter/Timer Circuits **Note:** Global interrupts override this function as described in "Interrupts" on page 48. If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27). You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded. #### **During PING-PONG Mode** The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count. #### **Timer Output** The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1. #### Interrupts The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests. The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57. ``` FF NOP ; clear the pipeline 6F Stop ; enter Stop Mode Or FF NOP ; clear the pipeline 7F HALT ; enter HALT Mode ``` #### **Port Configuration Register** The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00. PCON(FH)00H ^{*} Default setting after reset Figure 32. Port Configuration Register (PCON) (Write Only) #### **Comparator Output Port 3 (D0)** Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration. #### Port 1 Output Mode (D1) Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain. #### **WDTMR During STOP (D3)** This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1. #### **EPROM Selectable Options** There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21. **Table 21. EPROM Selectable Options** | Port 00–03 Pull-Ups | On/Off | |-----------------------------------|--------| | Port 04–07 Pull-Ups | On/Off | | Port 10–13 Pull-Ups | On/Off | | Port 14–17 Pull-Ups | On/Off | | Port 20–27 Pull-Ups | On/Off | | EPROM Protection | On/Off | | Watch-Dog Timer at Power-On Reset | On/Off | #### **Voltage Brown-Out/Standby** An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally. #### CTR1(0D)01H D7 D6 D5 D3 D1 D0 D4 D2 Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially **Demodulation Mode** R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially **Demodulation Mode** R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 **Demodulation Mode** 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND **Demodulation Mode** 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT **Demodulation Mode** 0 P31 as Demodulator Input 1 P20 as Demodulator Input Transmit/Demodulation Mode 0 Transmit Mode * * Default setting after reset **Default setting after reset. Not reset with Stop Mode 1 Demodulation Mode Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) recovery #### CTR3(0D)03H ^{*} Default setting after reset. Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted) Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse. ^{**} Default setting after reset. Not reset with Stop Mode recovery. ^{*} Default setting after reset. Not reset with Stop Mode recovery. Figure 49. Port 3 Mode Register (F7H: Write Only) | 16KB Standard Temperature: 0° to +70°C | | | | | | | |--|---------------------|----------------|---------------------|--|--|--| | Part Number | Description | Part Number | Description | | | | | ZGP323LSH4816C | 48-pin SSOP 16K OTP | ZGP323LSS2816C | 28-pin SOIC 16K OTP | | | | | ZGP323LSP4016C | 40-pin PDIP 16K OTP | ZGP323LSH2016C | 20-pin SSOP 16K OTP | | | | | ZGP323LSH2816C | 28-pin SSOP 16K OTP | ZGP323LSP2016C | 20-pin PDIP 16K OTP | | | | | ZGP323LSP2816C | 28-pin PDIP 16K OTP | ZGP323LSS2016C | 20-pin SOIC 16K OTP | | | | | 16KB Extended Temperature: -40° to +105°C | | | | | | |---|---------------------|----------------|---------------------|--|--| | Part Number | Description | Part Number | Description | | | | ZGP323LEH4816C | 48-pin SSOP 16K OTP | ZGP323LES2816C | 28-pin SOIC 16K OTP | | | | ZGP323LEP4016C | 40-pin PDIP 16K OTP | ZGP323LES2016C | 20-pin SOIC 16K OTP | | | | ZGP323LEH2816C | 28-pin SSOP 16K OTP | ZGP323LEH2016C | 20-pin SSOP 16K OTP | | | | ZGP323LEP2816C | 28-pin PDIP 16K OTP | ZGP323LEP2016C | 20-pin PDIP 16K OTP | | | | 16KB Automotive Temperature: -40° to +125°C | | | | | | |--|---------------------|----------------|---------------------|--|--| | Part Number | Description | Part Number | Description | | | | ZGP323LAH4816C | 48-pin SSOP 16K OTP | ZGP323LAS2816C | 28-pin SOIC 16K OTP | | | | ZGP323LAP4016C | 40-pin PDIP 16K OTP | ZGP323LAH2016C | 20-pin SSOP 16K OTP | | | | ZGP323LAH2816C | 28-pin SSOP 16K OTP | ZGP323LAP2016C | 20-pin PDIP 16K OTP | | | | ZGP323LAP2816C | 28-pin PDIP 16K OTP | ZGP323LAS2016C | 20-pin SOIC 16K OTP | | | | | | | | | | | Note: Replace C with G for Lead-Free Packaging | | | | | | PS023702-1004 Preliminary Ordering Information | 4KB Standard Temperature: 0° to +70°C | | | | | | |---------------------------------------|--------------------|----------------|--------------------|--|--| | Part Number | Description | Part Number | Description | | | | ZGP323LSH4804C | 48-pin SSOP 4K OTP | ZGP323LSS2804C | 28-pin SOIC 4K OTP | | | | ZGP323LSP4004C | 40-pin PDIP 4K OTP | ZGP323LSH2004C | 20-pin SSOP 4K OTP | | | | ZGP323LSH2804C | 28-pin SSOP 4K OTP | ZGP323LSP2004C | 20-pin PDIP 4K OTP | | | | ZGP323LSP2804C | 28-pin PDIP 4K OTP | ZGP323LSS2004C | 20-pin SOIC 4K OTP | | | | 4KB Extended Temperature: -40° to +105°C | | | | | |--|--------------------|----------------|--------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LEH4804C | 48-pin SSOP 4K OTP | ZGP323LES2804C | 28-pin SOIC 4K OTP | | | ZGP323LEP4004C | 40-pin PDIP 4K OTP | ZGP323LEH2004C | 20-pin SSOP 4K OTP | | | ZGP323LEH2804C | 28-pin SSOP 4K OTP | ZGP323LEP2004C | 20-pin PDIP 4K OTP | | | ZGP323LEP2804C | 28-pin PDIP 4K OTP | ZGP323LES2004C | 20-pin SOIC 4K OTP | | | 4KB Automotive Temperature: -40° to +125°C | | | | | |--|--------------------|----------------|--------------------|--| | Part Number | Description | Part Number | Description | | | ZGP323LAH4804C | 48-pin SSOP 4K OTP | ZGP323LAS2804C | 28-pin SOIC 4K OTP | | | ZGP323LAP4004C | 40-pin PDIP 4K OTP | ZGP323LAH2004C | 20-pin SSOP 4K OTP | | | ZGP323LAH2804C | 28-pin SSOP 4K OTP | ZGP323LAP2004C | 20-pin PDIP 4K OTP | | | ZGP323LAP2804C | 28-pin PDIP 4K OTP | ZGP323LAS2004C | 20-pin SOIC 4K OTP | | Note: Replace C with G for Lead-Free Packaging Additional Components | Part Number | Description | Part Number | Description | |----------------|---------------------|----------------|--------------------| | ZGP323ICE01ZEM | Emulator/programmer | ZGP32300100ZPR | Programming System | ### **Precharacterization Product** The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues. ZiLOG, Inc. 532 Race Street San Jose, CA 95126-3432 Telephone: (408) 558-8500 FAX: 408 558-8300 Internet: http://www.ZiLOG.com # Index | Numerics | counter/timer | |---------------------------------------|--| | 16-bit counter/timer circuits 44 | 16-bit circuits 44 | | 20-pin DIP package diagram 81 | 8-bit circuits 40 | | 20-pin SSOP package diagram 82 | brown-out voltage/standby 62 | | 28-pin DIP package diagram 85 | clock 51 | | 28-pin SOlCpackage diagram 84 | demodulation mode count capture flow- | | 28-pin SSOP package diagram 86 | chart 42 | | 40-pin DIP package diagram 87 | demodulation mode flowchart 43 | | 48-pin SSOP package diagram 88 | EPROM selectable options 62 | | 8-bit counter/timer circuits 40 | glitch filter circuitry 38 | | | halt instruction 52 | | | input circuit 38 | | A | interrupt block diagram 49 | | absolute maximum ratings 10 | interrupt types, sources and vectors 50 | | AC | oscillator configuration 51 | | characteristics 14 | output circuit 47 | | timing diagram 14 | ping-pong mode 46 | | address spaces, basic 2 | port configuration register 53 | | architecture 2 | resets and WDT 61 | | expanded register file 26 | SCLK circuit 56 | | 5. ps. 14.54 1.5 g. 61.61 2.5 | stop instruction 52 | | | stop mode recovery register 55 | | В | stop mode recovery register 2 59 | | basic address spaces 2 | stop mode recovery source 57 | | block diagram, ZLP32300 functional 3 | T16 demodulation mode 45 | | block diagram, ZEI 32300 functional 3 | T16 transmit mode 44 | | | T16_OUT in modulo-N mode 45 | | C | T16_OUT in single-pass mode 45 | | | T8 demodulation mode 41 | | capacitance 11 | T8 transmit mode 38 | | characteristics
AC 14 | T8_OUT in modulo-N mode 41 | | DC 11 | T8_OUT in single-pass mode 41 | | clock 51 | transmit mode flowchart 39 | | | voltage detection and flags 63 | | comparator inputs/outputs 23 | watch-dog timer mode register 60 | | configuration | watch-dog timer time select 61 | | port 0 17 | CTR(D)01h T8 and T16 Common Functions 33 | | port 1 18 | | | port 2 19 | | | port 3 20 | | | port 3 counter/timer 22 | | | M | port 1 configuration 18 | | | |--|--------------------------------------|--|--| | memory, program 23 | port 1 pin function 17 | | | | modulo-N mode | port 2 configuration 19 | | | | T16_OUT 45 | port 2 pin function 18 | | | | T8_OUT 41 | port 3 configuration 20 | | | | | port 3 pin function 19 | | | | | port 3counter/timer configuration 22 | | | | 0 | port configuration register 53 | | | | oscillator configuration 51 | power connections 3 | | | | output circuit, counter/timer 47 | power supply 5 | | | | ,, | precharacterization product 95 | | | | | program memory 23 | | | | P | map 24 | | | | package information | | | | | 20-pin DIP package diagram 81 | R | | | | 20-pin SSOP package diagram 82 | | | | | 28-pin DIP package diagram 85 | ratings, absolute maximum 10 | | | | 28-pin SOIC package diagram 84 | register 59 | | | | 28-pin SSOP package diagram 86 | CTR(D)01h 33 | | | | 40-pin DIP package diagram 87 | CTR0(D)00h 31 | | | | 48-pin SSOP package diagram 88 | CTR2(D)02h 35 | | | | pin configuration | CTR3(D)03h 37 | | | | 20-pin DIP/SOIC/SSOP 5 | flag 78 | | | | 28-pin DIP/SOIC/SSOP 6 | HI16(D)09h 30
HI8(D)0Bh 30 | | | | 40- and 48-pin 8 | interrupt priority 76 | | | | 40-pin DIP 7 | interrupt phonty 70 | | | | 48-pin SSOP 8 | interruptmask 77 | | | | pin functions | L016(D)08h 30 | | | | port 0 (P07 - P00) 16 | L08(D)0Ah 30 | | | | port 0 (P17 - P10) 17 | LVD(D)0Ch 63 | | | | port 0 configuration 17 | pointer 78 | | | | port 1 configuration 18 | port 0 and 1 75 | | | | port 2 (P27 - P20) 18 | port 2 configuration 73 | | | | port 2 (P37 - P30) 19 | port 3 mode 74 | | | | port 2 configuration 19 | port configuration 53, 73 | | | | port 3 configuration 20 | SMR2(F)0Dh 38 | | | | port 3 counter/timer configuration 22 | stack pointer high 79 | | | | reset) 23 | stack pointer low 79 | | | | XTAL1 (time-based input 16
XTAL2 (time-based output) 16 | stop mode recovery 55 | | | | ping-pong mode 46 | stop mode recovery 2 59 | | | | port 0 configuration 17 | stop-mode recovery 71 | | | | port 0 configuration 17 port 0 pin function 16 | stop-mode recovery 2 72 | | | | port o piri furiction to | T16 control 67 | | |