E·XFL

Zilog - ZGP323LSH2808C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2808c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 GPTM **OTP MCU Family** Product Specification

11 Zilog

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum				
Input capacitance	12pF				
Output capacitance	12pF				
I/O capacitance	12pF				
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND					

DC Characteristics

Table 6. DC Characteristics	Table 8.	DC Characteristics
-----------------------------	----------	---------------------------

	T _Δ = 0°C to +70°C							
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 1.0 \text{mA}$ $I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V		
IIL	Input Leakage	2.0-3.6	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
IOL	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
ICC	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 2 1, 2

12

	T _Δ = 0°C to +70°C							
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	V _{IN} = 0V, V _{CC} at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μA	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μA	Same as above	3
		2.0			500	μA	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current (Low Voltage)				10	μΑ	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
BO	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

AC Characteristics

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

			T _A =0°C to +70°C 8.0MHz					
No	Symbol	Parameter	V _{CC}	Minimum	Maximum	Units	Notes	Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3TpC			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3	
		Spec		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5ТрС		4	
12	Twdt	Watch-Dog Timer Delay Time	2.0–3.6 2.0–3.6 2.0–3.6 2.0–3.6	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-On Reset	2.0–3.6	2.5	10	ms		

Table 10. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 20. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP^{TM} asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP^{TM} does not assert the RESET pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

Z8 GP[™] OTP MCU Family Product Specification

Location of 32	768	Not Accessible
first Byte of		On-Chip
executed		ROW
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
Interrupt Vector	7	IRQ3
(Lower Byte)	6	IRQ3
	5	► IRQ2
Interrupt Vector	4	┍ IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The $Z8^{\ensuremath{\mathbb{R}}}$ register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 13 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 13. CTR1(0D)01H T8 and T16 Common Functions

ZILOG

Figure 24. Demodulation Mode Flowchart

Z8 GP[™] OTP MCU Family Product Specification

Caution: Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFFH. Transition from 0 to FFFFH is not a timeout condition.

Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

Figure 30. Interrupt Block Diagram

Table 19. Stop Mode Recovery Source

SMR:432			Operation				
D4	D3	D2	Description of Action				
0	0	0	POR and/or external reset recovery				
0	0	1	Reserved				
0	1	0	P31 transition				
0	1	1	P32 transition				
1	0	0	P33 transition				
1	0	1	P27 transition				
1	1	0	Logical NOR of P20 through P23				
1	1	1	Logical NOR of P20 through P27				

>

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register 0CH at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

CTR2(0D)02H

Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

CTR3(0D)03H

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved No effect when written Always reads 11111
								Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode
								T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled W0 Stop T ₈ W1 Enable T ₈
								T ₁₆ Enable R 0* T ₁₆ Disabled R 1 T ₁₆ Enabled W 0 Stop T ₁₆ W 1 Enable T ₁₆

* Default setting after reset. ** Default setting after reset. Not reset with Stop Mode recovery.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

LVD(0D)0CH

* Default

Figure 43. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

ZILOG

R249 IPR(F9H)

Figure 51. Interrupt Priority Register (F9H: Write Only)

R250 IRQ(FAH)

Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 53. Interrupt Mask Register (FBH: Read/Write)

Z i L 0 G 92

4KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System