

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2808g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

List of Figures

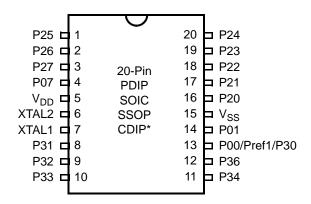
Figure 1.	Functional Block Diagram	. 3
Figure 2.	Counter/Timers Diagram	. 4
Figure 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration	. 5
Figure 4.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration	. 6
Figure 5.	40-Pin PDIP/CDIP* Pin Configuration	. 7
Figure 6.	48-Pin SSOP Pin Configuration	. 8
Figure 7.	Test Load Diagram	10
Figure 8.	AC Timing Diagram	14
Figure 9.	Port 0 Configuration	17
Figure 10.	Port 1 Configuration	
	Port 2 Configuration	
Figure 12.	Port 3 Configuration	20
	Port 3 Counter/Timer Output Configuration	
Figure 14.	Program Memory Map (32K OTP)	24
Figure 15.	Expanded Register File Architecture	26
Figure 16.	Register Pointer	27
Figure 17.	Register Pointer—Detail	29
Figure 18.	Glitch Filter Circuitry	38
Figure 19.	Transmit Mode Flowchart	39
Figure 20.	8-Bit Counter/Timer Circuits	40
Figure 21.	T8_OUT in Single-Pass Mode	41
Figure 22.	T8_OUT in Modulo-N Mode	41
Figure 23.	Demodulation Mode Count Capture Flowchart	42
Figure 24.	Demodulation Mode Flowchart	43
Figure 25.	16-Bit Counter/Timer Circuits	44
Figure 26.	T16_OUT in Single-Pass Mode	45
Figure 27.	T16_OUT in Modulo-N Mode	45
Figure 28.	Ping-Pong Mode Diagram	47
Figure 29.	Output Circuit	47
Figure 30.	Interrupt Block Diagram	49
Figure 31.	Oscillator Configuration	51
Figure 32.	Port Configuration Register (PCON) (Write Only)	53
Figure 33.	STOP Mode Recovery Register	55
Figure 34.	SCLK Circuit	56

- Port 1: 0–3 pull-up transistors
- Port 1: 4–7 pull-up transistors
- Port 2: 0–7 pull-up transistors
- EPROM Protection
- WDT enabled at POR
- **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at $V_{CC}=2$ V.

General Description

The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to registermapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.


There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of userselectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, "", are active Low. For example, B/\overline{W} , in which WORD is active Low, and \overline{B}/W , in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 2.

Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin #	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34. P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

>

				T _A =0°C 8.0	Watch-Dog Timer ⁻ Mode			
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3	
		Spec		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watch-Dog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-On Reset	2.0–3.6	2.5	10	ms		

Table 10. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 11. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 20. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP^{TM} asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP^{TM} does not assert the RESET pin when under VBO.

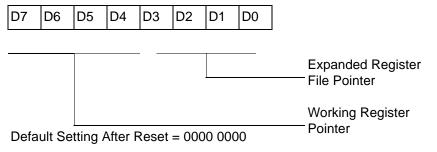
Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.


RAM

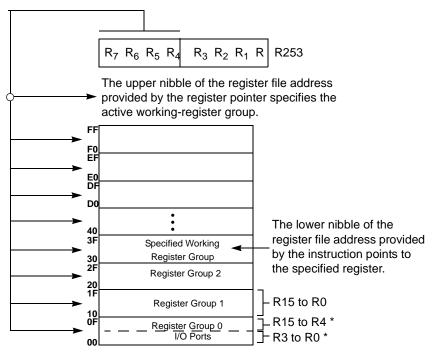
This device features 256B of RAM. See Figure 14.

27

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\rm H}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)


R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2R3 = Reserved

* RP = 00: Selects Register Bank 0, Working Register Group 0

Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

32

Table 12. CTR0(D)00H Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0	Disable Time-Out Interrupt
			1	Enable Time-Out Interrupt
P34_Out	0	R/W	0*	P34 as Port Output
			1	T8 Output on P34

Note:

*Indicates the value upon Power-On Reset.

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

This bit defines the frequency of the input signal to T8.

35

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 14 lists and briefly describes the fields for this register.

ZILOG

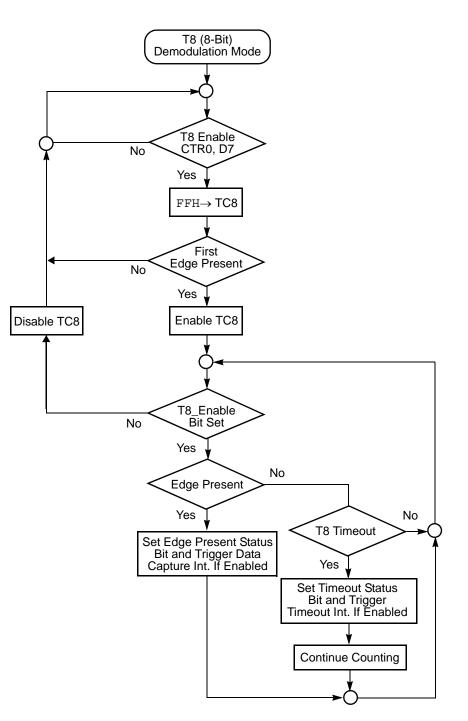


Figure 24. Demodulation Mode Flowchart

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

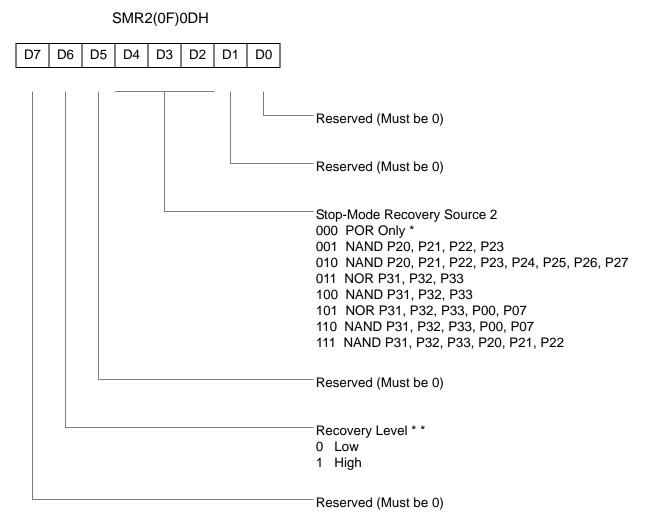
The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57.

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	Т8	8,9	Internal
IRQ5	LVD	10,11	Internal

Table 16. Interrupt Types, Sources, and Vectors

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.


An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17.

IRQ		Interrupt Edge			
D7	D6	IRQ2 (P31)	IRQ0 (P32)		
0	0	F	F		
0	1	F	R		
1	0	R	F		
1 1 R/F R/F					
Note: F = Falling Edge; R = Rising Edge					

Table 17. IRQ Register

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

ZILOG

R249 IPR(F9H)

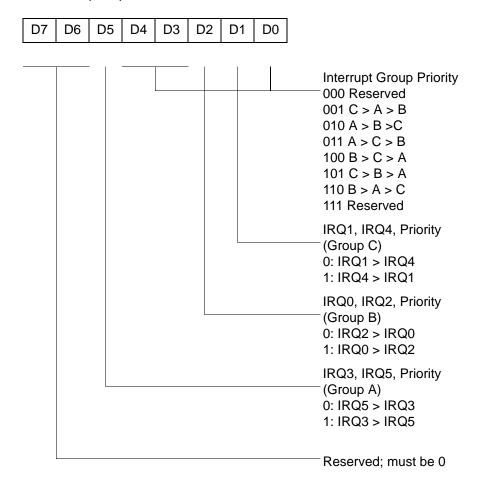
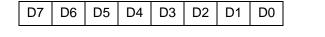
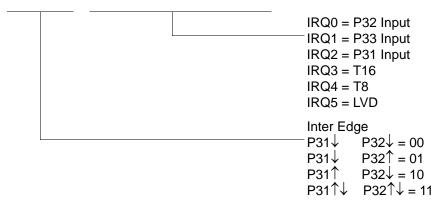




Figure 51. Interrupt Priority Register (F9H: Write Only)

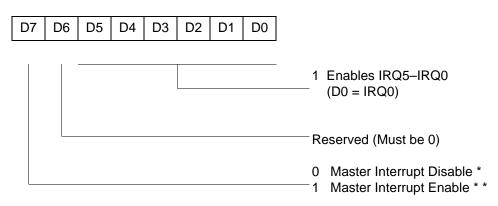
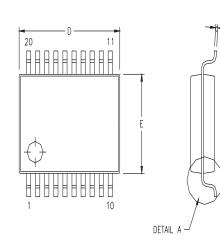
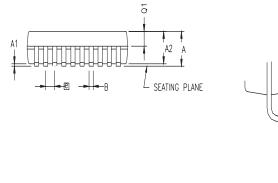

R250 IRQ(FAH)

Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)


* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register


Figure 53. Interrupt Mask Register (FBH: Read/Write)

Z8 GP[™] OTP MCU Family Product Specification

CVALDOL		MILLIMETER			INCH	
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e		0.65 BSC 0.0256 BSC			;	
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Н

0-"8

DETAIL A

Z i L 0 G 92

4KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C

	•		
Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System

Z8 GP[™] OTP MCU Family Product Specification

D

DC characteristics 11 demodulation mode count capture flowchart 42 flowchart 43 T16 45 T8 41 description functional 23 general 2 pin 4

Ε

EPROM selectable options 62 expanded register file 24 expanded register file architecture 26 expanded register file control registers 69 flag 78 interrupt mask register 77 interrupt priority register 76 interrupt request register 77 port 0 and 1 mode register 75 port 2 configuration register 73 port 3 mode register 74 port configuration register 73 register pointer 78 stack pointer high register 79 stack pointer low register 79 stop-mode recovery register 71 stop-mode recovery register 2 72 T16 control register 67 T8 and T16 common control functions register 65 T8/T16 control register 68 TC8 control register 64 watch-dog timer register 73

F

features standby modes 1 functional description counter/timer functional blocks 38 CTR(D)01h register 33 CTR0(D)00h register 31 CTR2(D)02h register 35 CTR3(D)03h register 37 expanded register file 24 expanded register file architecture 26 HI16(D)09h register 30 HI8(D)0Bh register 30 L08(D)0Ah register 30 L0I6(D)08h register 30 program memory map 24 **RAM 23** register description 63 register file 28 register pointer 27 register pointer detail 29 SMR2(F)0D1h register 38 stack 29 TC16H(D)07h register 30 TC16L(D)06h register 31 TC8H(D)05h register 31 TC8L(D)04h register 31

G

glitch filter circuitry 38

Η

halt instruction, counter/timer 52

I

input circuit 38 interrupt block diagram, counter/timer 49 interrupt types, sources and vectors 50

L

low-voltage detection register 63