Zilog - ZGP323LSH2816G Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

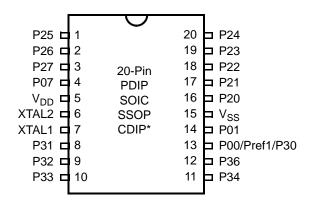
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K × 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	· .
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsh2816g

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ZiLOG

Figure 35. Stop Mode Recovery Source	. 57
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)	. 59
Figure 37. Watch-Dog Timer Mode Register (Write Only)	. 60
Figure 38. Resets and WDT	. 61
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) 64
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)	. 65
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)	. 67
Figure 42. T8/T16 Control Register (0D)03H: Read/Write	
(Except Where Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)	. 70
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	. 71
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only	
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	
Figure 48. Port 2 Mode Register (F6H: Write Only)	
Figure 49. Port 3 Mode Register (F7H: Write Only)	. 74
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	. 75
Figure 51. Interrupt Priority Register (F9H: Write Only)	. 76
Figure 52. Interrupt Request Register (FAH: Read/Write)	. 77
Figure 53. Interrupt Mask Register (FBH: Read/Write)	. 77
Figure 54. Flag Register (FCH: Read/Write)	. 78
Figure 55. Register Pointer (FDH: Read/Write)	. 78
Figure 56. Stack Pointer High (FEH: Read/Write)	. 79
Figure 57. Stack Pointer Low (FFH: Read/Write)	. 79
Figure 58. 20-Pin CDIP Package	. 80
Figure 59. 20-Pin PDIP Package Diagram	. 81
Figure 60. 20-Pin SOIC Package Diagram	. 81
Figure 61. 20-Pin SSOP Package Diagram	. 82
Figure 62. 28-Pin CDIP Package	. 83
Figure 63. 28-Pin SOIC Package Diagram	. 84
Figure 64. 28-Pin PDIP Package Diagram	. 85
Figure 65. 28-Pin SSOP Package Diagram	. 86
Figure 66. 40-Pin CDIP Package	. 87
Figure 67. 40-Pin PDIP Package Diagram	. 87
Figure 68. 48-Pin SSOP Package Design	. 88

Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin #	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34. P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

>

			T _A =0°C to +70°C 8.0MHz					Watch-Dog Timer
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	[−] Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3	
		Spec		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watch-Dog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-On Reset	2.0–3.6	2.5	10	ms		

Table 10. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

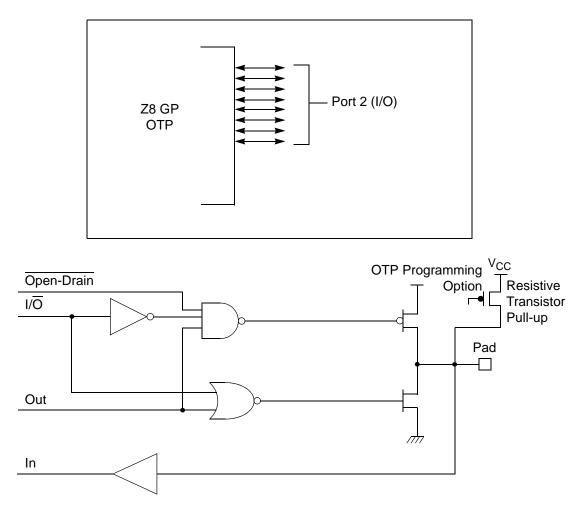


Figure 11. Port 2 Configuration

Port 3 (P37–P30)

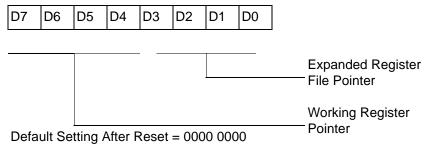
Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Lessting of the	700	Not Accessible
Location of 32	2768	On-Chip
instruction		ROM
executed after RESET		
	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
Interrupt Vector	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	➡ IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the



Z8 [®] Standard (Control Registers	Reset Condition
	Expanded Reg. Bank 0/Group 15*	* D7 D6 D5 D4 D3 D2 D1 D0
	FF SPL	
	FE SPH	U U U U U U U U
Register Pointer	FD RP	0 0 0 0 0 0 0
7 6 5 4 3 2 1 0	FC FLAGS	U U U U U U U U
	FB IMR	U U U U U U U U
Working Register Expanded Register	er FA IRQ	0 0 0 0 0 0 0 0
Group Pointer Bank Pointer	F9 IPR	U U U U U U U U
	F8 P01M	1 1 0 0 1 1 1 1
	* F7 P3M	00000000
	* F6 P2M	1 1 1 1 1 1 1 1
	F5 Reserved	U U U U U U U U
	F4 Reserved	U U U U U U U U
	F3 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
Register File (Bank 0)** /	F2 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
FF F0	F1 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
F0	F0 Reserved	U U U U U U U U
	Expanded Reg. Bank F/Group 0**	
	(F) OF WDTMR	UU001101
	(F) 0E Reserved	
	* (F) 0D SMR2	0 0 0 0 0 0 0 0
	(F) 0C Reserved	
7F	↑ (F) 0B SMR	U 0 1 0 0 0 U 0
/F	(F) 0A Reserved	
	(F) 09 Reserved	
	(F) 08 Reserved	
	(F) 07 Reserved	
	(F) 06 Reserved	
	(F) 05 Reserved	
₀₅ ┝━━━━━━┓┛┙	(F) 04 Reserved	
	(F) 03 Reserved	
	(F) 02 Reserved	
	(F) 01 Reserved	
Expanded Reg. Bank 0/Group (0)	(F) 00 PCON	1 1 1 1 1 1 1 0
(0) 03 P3 0 U	Expanded Reg. Bank D/Group 0	
	(D) 0C LVD	$\cup \cup \cup \cup \cup \cup \cup 0$
(0) 02 P2 U	* (D) 0B HI8	000000000
* (0) 01 P1 U	* (D) 0A LO8	000000000
	* (D) 09 HI16	0 0 0 0 0 0 0 0
(0) 00 P0 U	* (D) 08 LO16	0 0 0 0 0 0 0 0
U = Unknown	* (D) 07 TC16H	0 0 0 0 0 0 0 0
* Is not reset with a Stop-Mode Recovery	* (D) 06 TC16L	0 0 0 0 0 0 0
** All addresses are in hexadecimal	* (D) 05 TC8H	0 0 0 0 0 0 0
↑ Is not reset with a Stop-Mode Recovery, except Bit 0	* (D) 04 TC8L	0 0 0 0 0 0 0 0
↑↑ Bit 5 Is not reset with a Stop-Mode Recovery	1↑ (D) 03 CTR3	0 0 0 1 1 1 1 1
↑↑↑ Bits 5,4,3,2 not reset with a Stop-Mode Recovery	↑↑↑ (D) 02 CTR2	0 0 0 0 0 0 0 0
$\uparrow\uparrow\uparrow\uparrow$ Bits 5 and 4 not reset with a Stop-Mode Recovery	^^↑↑↑ (D) 01 CTR1	0 0 0 0 0 0 0
↑↑↑↑↑ Bits 5,4,3,2,1 not reset with a Stop-Mode Recovery	↑↑↑↑↑ (D) 00 CTR0	000000000
		-

Figure 15. Expanded Register File Architecture

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\rm H}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2R3 = Reserved

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 13 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
-			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 13. CTR1(0D)01H T8 and T16 Common Functions

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset.

**Default at Power-On Reset.Not reset with Stop Mode recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 45.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16_Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 15 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 15. CTR3	(D)03H:	T8/T16	Control	Register
----------------	---------	--------	---------	----------

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
			1	Enable Sync Mode

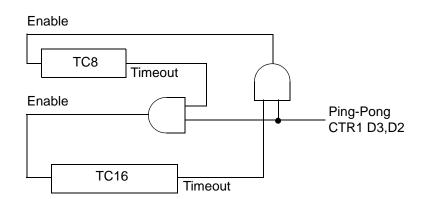
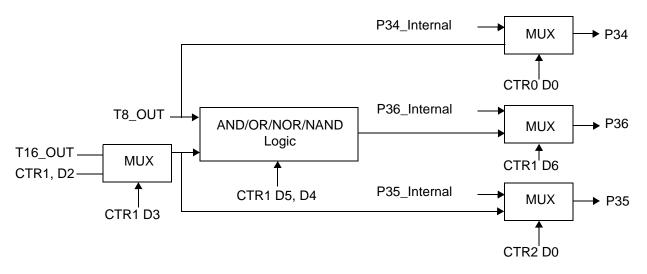



Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57.

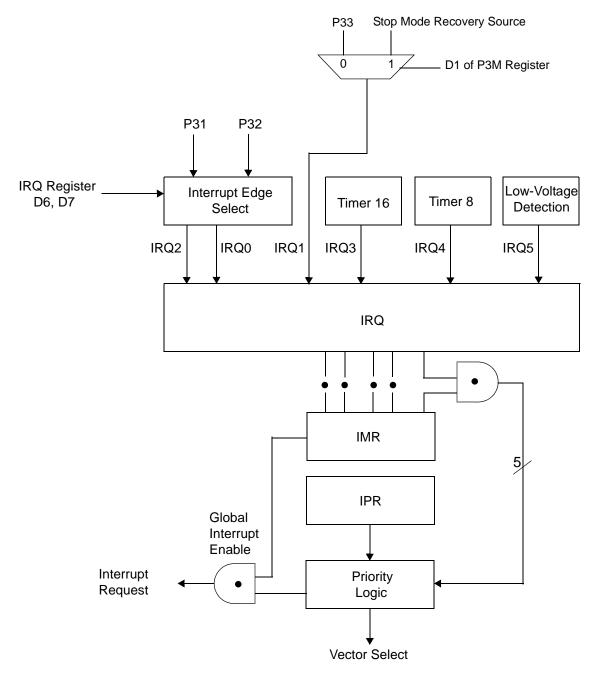
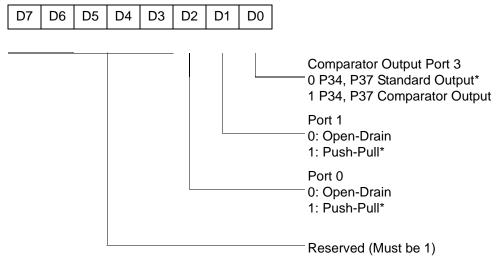


Figure 30. Interrupt Block Diagram



NOP	; clear the pipeline
Stop	; enter Stop Mode
NOP	; clear the pipeline
HALT	; enter HALT Mode
	Stop

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

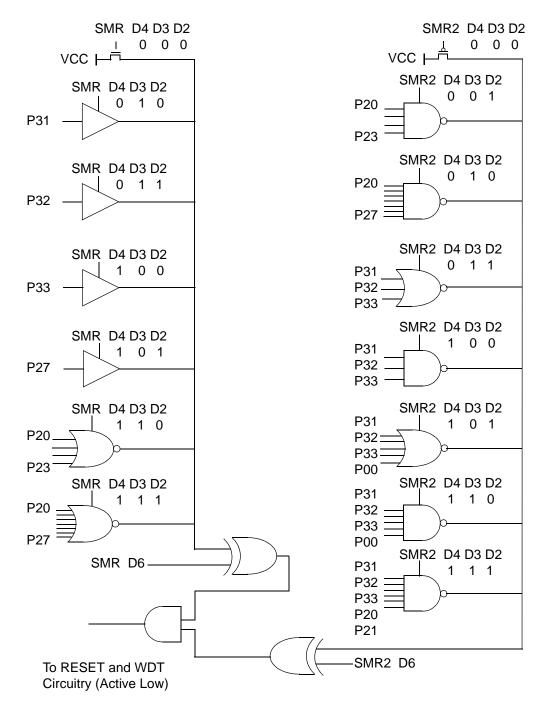


Figure 35. Stop Mode Recovery Source

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

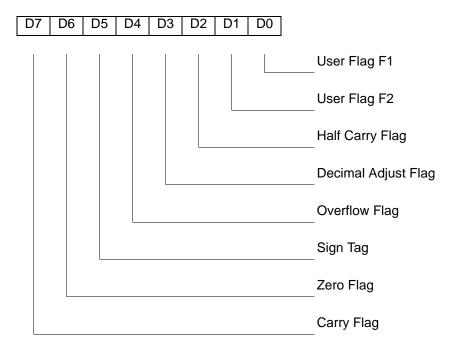
There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21.

Table 21. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

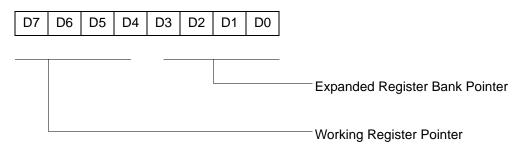
Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.



Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.



R252 Flags(FCH)

Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

INCH

NOM

0.073

0.005

0.068

0.006

0.402

0.209

0.307

0.030

0.0256 TYP

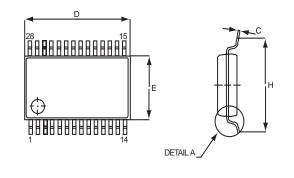
MAX

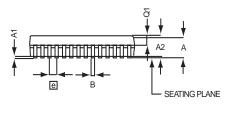
0.078

0.008

0.070

0.015


0.008


0.407

0.212

0.311

0.037

0-8°

DETAIL 'A'

SYMBOL

А

A1

A2

В

С

D

Е

е

Н

L

MIN

1.73

0.05

1.68

0.25

0.09

10.07

5.20

7.65

0.63

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

MILLIMETER

NOM

1.86

0.13

1.73

_

10.20

5.30

0.65 TYP

7.80

0.75

MAX

1.99

0.21

1.78

0.38

0.20

10.33

5.38

7.90

0.95

MIN

0.068

0.002

0.066

0.010

0.004

0.397

0.205

0.301

0.025

Figure 65. 28-Pin SSOP Package Diagram

T8 and T16 common control functions 65 T8/T16 control 68 TC16H(D)07h 30 TC16L(D)06h 31 TC8 control 64 TC8H(D)05h 31 TC8L(D)04h 31 voltage detection 69 watch-dog timer 73 register description Counter/Timer2 LS-Byte Hold 31 Counter/Timer2 MS-Byte Hold 30 Counter/Timer8 Control 31 Counter/Timer8 High Hold 31 Counter/Timer8 Low Hold 31 CTR2 Counter/Timer 16 Control 35 CTR3 T8/T16 Control 37 Stop Mode Recovery2 38 T16 Capture LO 30 T8 and T16 Common functions 33 T8_Capture_HI 30 T8 Capture LO 30 register file 28 expanded 24 register pointer 27 detail 29 reset pin function 23 resets and WDT 61

S

SCLK circuit 56 single-pass mode T16_OUT 45 T8_OUT 41 stack 29 standard test conditions 10 standby modes 1 stop instruction, counter/timer 52 stop mode recovery 2 register 59 source 57 stop mode recovery 2 59 stop mode recovery register 55

Т

T16 transmit mode 44 T16_Capture_HI 30 T8 transmit mode 38 T8_Capture_HI 30 test conditions, standard 10 test load diagram 10 timing diagram, AC 14 transmit mode flowchart 39

V

VCC 5 voltage brown-out/standby 62 detection and flags 63 voltage detection register 69

W

watch-dog timer mode registerwatch-dog timer mode register 60 time select 61

Χ

XTAL1 5 XTAL1 pin function 16 XTAL2 5 XTAL2 pin function 16