Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 24 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323lsh2832c | # **Table of Contents** | Development Features | |--| | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions | | DC Characteristics | | AC Characteristics | | Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23 | | Functional Description 23 Program Memory 23 RAM 23 Expanded Register File 24 Register File 28 Stack 29 Timers 30 Counter/Timer Functional Blocks 38 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) 69 | | Standard Control Registers | | Package Information | | Ordering Information | | Precharacterization Product 95 | # List of Figures | Figure 1. | Functional Block Diagram 3 | |------------|--| | Figure 2. | Counter/Timers Diagram | | Figure 3. | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration | | Figure 4. | 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration | | Figure 5. | 40-Pin PDIP/CDIP* Pin Configuration | | Figure 6. | 48-Pin SSOP Pin Configuration | | Figure 7. | Test Load Diagram | | Figure 8. | AC Timing Diagram | | Figure 9. | Port 0 Configuration | | Figure 10. | Port 1 Configuration | | Figure 11. | Port 2 Configuration | | Figure 12. | Port 3 Configuration | | Figure 13. | Port 3 Counter/Timer Output Configuration | | Figure 14. | Program Memory Map (32K OTP) | | Figure 15. | Expanded Register File Architecture 26 | | Figure 16. | Register Pointer | | Figure 17. | Register Pointer—Detail | | Figure 18. | Glitch Filter Circuitry | | Figure 19. | Transmit Mode Flowchart 39 | | Figure 20. | 8-Bit Counter/Timer Circuits | | Figure 21. | T8_OUT in Single-Pass Mode | | Figure 22. | T8_OUT in Modulo-N Mode | | Figure 23. | Demodulation Mode Count Capture Flowchart 42 | | Figure 24. | Demodulation Mode Flowchart 43 | | Figure 25. | 16-Bit Counter/Timer Circuits 44 | | Figure 26. | T16_OUT in Single-Pass Mode | | Figure 27. | T16_OUT in Modulo-N Mode | | Figure 28. | Ping-Pong Mode Diagram 47 | | Figure 29. | Output Circuit | | Figure 30. | Interrupt Block Diagram | | Figure 31. | Oscillator Configuration | | Figure 32. | Port Configuration Register (PCON) (Write Only) 53 | | Figure 33. | STOP Mode Recovery Register 55 | | Figure 34. | SCLK Circuit 56 | Port 1: 0–3 pull-up transistors Port 1: 4–7 pull-up transistors Port 2: 0–7 pull-up transistors EPROM Protection WDT enabled at POR **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at V_{CC}=2 V. ## **General Description** The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors. The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications. There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D). To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages. Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low. Power connections use the conventional descriptions listed in Table 2. Figure 5. 40-Pin PDIP/CDIP* Pin Configuration Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use. ### **AC Characteristics** Figure 8 and Table 10 describe the Alternating Current (AC) characteristics. Figure 8. AC Timing Diagram Figure 14. Program Memory Map (32K OTP) ## **Expanded Register File** The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the The counter/timers are mapped into ERF group D. Access is easily performed using the following: ``` RP, #0Dh T.D ; Select ERF D for access to bank D ; (working register group 0) R0,#xx LD ; load CTRL0 LD 1, #xx ; load CTRL1 LD R1, 2 ; CTRL2→CTRL1 LD RP, #0Dh ; Select ERF D for access to bank D ; (working register group 0) RP, #7Dh ; Select expanded register bank D and working ; register group 7 of bank 0 for access. 71h, 2 ; CTRL2→register 71h R1, 2 ; CTRL2\rightarrowregister 71h ``` ### **Register File** The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 12) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group. Note: Working register group E0–EF can only be accessed through working registers and indirect addressing modes. Table 15. CTR3 (D)03H: T8/T16 Control Register (Continued) | Field | Bit Position | | Value | Description | |----------|--------------|---|-------|--------------------| | Reserved | 43210 | R | 1 | Always reads 11111 | | | | W | X | No Effect | Note: *Indicates the value upon Power-On Reset. #### Counter/Timer Functional Blocks #### **Input Circuit** The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18). Figure 18. Glitch Filter Circuitry #### **T8 Transmit Mode** Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19. ^{**}Indicates the value upon Power-On Reset. Not reset with Stop Mode recovery. into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24). Figure 23. Demodulation Mode Count Capture Flowchart #### Port 0 Output Mode (D2) Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain. #### Stop-Mode Recovery Register (SMR) This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH. #### SMR(0F)0BH - * Default after Power On Reset or Watch-Dog Reset - * * Set after STOP Mode Recovery - * * * At the XOR gate input - * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source. Figure 33. STOP Mode Recovery Register #### SCLK/TCLK Divide-by-16 Select (D0) D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0. z i L o G | 57 Figure 35. Stop Mode Recovery Source #### Watch-Dog Timer Mode Register (WDTMR) The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the Z8[®] CPU if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags. The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location <code>0Fh</code>. It is organized as shown in Figure 37. #### WDTMR(0F)0Fh ^{*} Default setting after reset Figure 37. Watch-Dog Timer Mode Register (Write Only) #### WDT Time Select (D0, D1) This bit selects the WDT time period. It is configured as indicated in Table 20. ## **Expanded Register File Control Registers (0D)** The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43. ^{*} Default setting after reset Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) ^{**}Default setting after reset. Not reset with Stop Mode recovery. #### WDTMR(0F)0FH ^{*} Default setting after reset Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only) # **Standard Control Registers** R246 P2M(F6H) ^{*} Default setting after reset Figure 48. Port 2 Mode Register (F6H: Write Only) # **Package Information** Package information for all versions of Z8 GPTM OTP MCU Family are depicted in Figures 58 through Figure 68. Figure 58. 20-Pin CDIP Package ZiLOG Figure 62. 28-Pin CDIP Package | SYMBOL | MILLIMETER | | INCH | | |--------|------------|-------|-------|--------| | SIMBOL | MIN | MAX | MIN | MAX | | A | 2.41 | 2.79 | 0.095 | 0.110 | | A1 | 0.23 | 0.38 | 0.009 | 0.015 | | A2 | 2.18 | 2.39 | 0.086 | 0.094 | | ь | 0.20 | 0.34 | 0.008 | 0.0135 | | С | 0.13 | 0.25 | 0.005 | 0.010 | | D | 15.75 | 16.00 | 0.620 | 0.630 | | E | 7.39 | 7.59 | 0.291 | 0.299 | | e | 0.635 BSC | | 0.0 | 25 BSC | | Н | 10.16 | 10.41 | 0.400 | 0.410 | | L | 0.51 | 1.016 | 0.020 | 0.040 | CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH Figure 68. 48-Pin SSOP Package Design Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly. # **Ordering Information** | 32KB Standard Temperature: 0° to +70°C | | | | |--|---------------------|----------------|---------------------| | Part Number | Description | Part Number | Description | | ZGP323LSH4832C | 48-pin SSOP 32K OTP | ZGP323LSS2832C | 28-pin SOIC 32K OTP | | ZGP323LSP4032C | 40-pin PDIP 32K OTP | ZGP323LSH2032C | 20-pin SSOP 32K OTP | | ZGP323LSH2832C | 28-pin SSOP 32K OTP | ZGP323LSP2032C | 20-pin PDIP 32K OTP | | ZGP323LSP2832C | 28-pin PDIP 32K OTP | ZGP323LSS2032C | 20-pin SOIC 32K OTP | | ZGP323LSK2032E | 20-pin CDIP 32K OTP | ZGP323LSK4032E | 40-pin CDIP 32K OTP | | | | ZGP323LSK2832E | 28-pin CDIP 32K OTP | | | | | | | 32KB Extended | Temperature: | -40° to | +105° | C | |---------------|--------------|---------|-------|---| |---------------|--------------|---------|-------|---| | Part Number | Description | Part Number | Description | |----------------|---------------------|----------------|---------------------| | ZGP323LEH4832C | 48-pin SSOP 32K OTP | ZGP323LES2832C | 28-pin SOIC 32K OTP | | ZGP323LEP4032C | 40-pin PDIP 32K OTP | ZGP323LEH2032C | 20-pin SSOP 32K OTP | | ZGP323LEH2832C | 28-pin SSOP 32K OTP | ZGP323LEP2032C | 20-pin PDIP 32K OTP | | ZGP323LEP2832C | 28-pin PDIP 32K OTP | ZGP323LES2032C | 20-pin SOIC 32K OTP | | Part Number | Description | Part Number | Description | |----------------|---------------------|----------------|---------------------| | ZGP323LAH4832C | 48-pin SSOP 32K OTP | ZGP323LAS2832C | 28-pin SOIC 32K OTP | | ZGP323LAP4032C | 40-pin PDIP 32K OTP | ZGP323LAH2032C | 20-pin SSOP 32K OTP | | ZGP323LAH2832C | 28-pin SSOP 32K OTP | ZGP323LAP2032C | 20-pin PDIP 32K OTP | | ZGP323LAP2832C | 28-pin PDIP 32K OTP | ZGP323LAS2032C | 20-pin SOIC 32K OTP | | | | | | Note: Replace C with G for Lead-Free Packaging # Index | Numerics | counter/timer | |---------------------------------------|--| | 16-bit counter/timer circuits 44 | 16-bit circuits 44 | | 20-pin DIP package diagram 81 | 8-bit circuits 40 | | 20-pin SSOP package diagram 82 | brown-out voltage/standby 62 | | 28-pin DIP package diagram 85 | clock 51 | | 28-pin SOlCpackage diagram 84 | demodulation mode count capture flow- | | 28-pin SSOP package diagram 86 | chart 42 | | 40-pin DIP package diagram 87 | demodulation mode flowchart 43 | | 48-pin SSOP package diagram 88 | EPROM selectable options 62 | | 8-bit counter/timer circuits 40 | glitch filter circuitry 38 | | | halt instruction 52 | | | input circuit 38 | | A | interrupt block diagram 49 | | absolute maximum ratings 10 | interrupt types, sources and vectors 50 | | AC | oscillator configuration 51 | | characteristics 14 | output circuit 47 | | timing diagram 14 | ping-pong mode 46 | | address spaces, basic 2 | port configuration register 53 | | architecture 2 | resets and WDT 61 | | expanded register file 26 | SCLK circuit 56 | | 5. ps. 14.54 1.5 g. 51.51 2.5 | stop instruction 52 | | | stop mode recovery register 55 | | В | stop mode recovery register 2 59 | | basic address spaces 2 | stop mode recovery source 57 | | block diagram, ZLP32300 functional 3 | T16 demodulation mode 45 | | block diagram, ZEI 32300 functional 3 | T16 transmit mode 44 | | | T16_OUT in modulo-N mode 45 | | C | T16_OUT in single-pass mode 45 | | | T8 demodulation mode 41 | | capacitance 11 | T8 transmit mode 38 | | characteristics
AC 14 | T8_OUT in modulo-N mode 41 | | DC 11 | T8_OUT in single-pass mode 41 | | clock 51 | transmit mode flowchart 39 | | | voltage detection and flags 63 | | comparator inputs/outputs 23 | watch-dog timer mode register 60 | | configuration | watch-dog timer time select 61 | | port 0 17 | CTR(D)01h T8 and T16 Common Functions 33 | | port 1 18 | | | port 2 19 | | | port 3 20 | | | port 3 counter/timer 22 | |