Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 32 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-BSSOP (0.295", 7.50mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323lsh4808c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2. Counter/Timers Diagram # **Pin Description** The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5. For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production. Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | Pin | Symbol | Direction | Description | |-------|--------------|--------------|--| | 1-3 | P25-P27 | Input/Output | Port 2, Bits 5,6,7 | | 4-7 | P04-P07 | Input/Output | Port 0, Bits 4,5,6,7 | | 8 | V_{DD} | | Power supply | | 9 | XTAL2 | Output | Crystal, oscillator clock | | 10 | XTAL1 | Input | Crystal, oscillator clock | | 11-13 | P31-P33 | Input | Port 3, Bits 1,2,3 | | 14 | P34 | Output | Port 3, Bit 4 | | 15 | P35 | Output | Port 3, Bit 5 | | 16 | P37 | Output | Port 3, Bit 7 | | 17 | P36 | Output | Port 3, Bit 6 | | 18 | Pref1/P30 | Input | Analog ref input; connect to V _{CC} if not used | | | Port 3 Bit 0 | | Input for Pref1/P30 | | 19-21 | P00-P02 | Input/Output | Port 0, Bits 0,1,2 | | 22 | V_{SS} | | Ground | | 23 | P03 | Input/Output | Port 0, Bit 3 | | 24-28 | P20-P24 | Input/Output | Port 2, Bits 0-4 | Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use. Figure 6. 48-Pin SSOP Pin Configuration Table 5. 40- and 48-Pin Configuration | 40-Pin PDIP/CDIP* # | 48-Pin SSOP# | Symbol | |---------------------|--------------|--------| | 26 | 31 | P00 | | 27 | 32 | P01 | | 30 | 35 | P02 | | 34 | 41 | P03 | | 5 | 5 | P04 | | 6 | 7 | P05 | | 7 | 8 | P06 | | 10 | 11 | P07 | | 28 | 33 | P10 | | 29 | 34 | P11 | | 32 | 39 | P12 | # **AC Characteristics** Figure 8 and Table 10 describe the Alternating Current (AC) characteristics. Figure 8. AC Timing Diagram Figure 9. Port 0 Configuration # Port 1 (P17-P10) Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register. **Note:** The Port 1 direction is reset to be input following an SMR. CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11. **Note:** Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode. **Table 11. Port 3 Pin Function Summary** | Pin | I/O | Counter/Timers | Comparator | Interrupt | |-----------|-----|----------------|------------|-----------| | Pref1/P30 | IN | | RF1 | | | P31 | IN | IN | AN1 | IRQ2 | | P32 | IN | | AN2 | IRQ0 | | P33 | IN | | RF2 | IRQ1 | | P34 | OUT | T8 | AO1 | | | P35 | OUT | T16 | | | | P36 | OUT | T8/16 | | | | P37 | OUT | | AO2 | | | P20 | I/O | IN | | | Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2. Figure 24. Demodulation Mode Flowchart #### If D6 of CTR2 Is 1 T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges. This T16 mode generally measures mark time, the length of an active carrier signal burst. If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1). ## **Ping-Pong Mode** This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28. **Note:** Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation. **Table 16. Interrupt Types, Sources, and Vectors** | Name | Source | Vector Location | Comments | |------|----------------------|------------------------|--| | IRQ0 | P32 | 0,1 | External (P32), Rising, Falling Edge Triggered | | IRQ1 | P33 | 2,3 | External (P33), Falling Edge Triggered | | IRQ2 | P31, T _{IN} | 4,5 | External (P31), Rising, Falling Edge Triggered | | IRQ3 | T16 | 6,7 | Internal | | IRQ4 | T8 | 8,9 | Internal | | IRQ5 | LVD | 10,11 | Internal | When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service. An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin. Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17. Table 17. IRQ Register | IRQ | | Interrupt Edge | | | |---|----|----------------|------------|--| | D7 | D6 | IRQ2 (P31) | IRQ0 (P32) | | | 0 | 0 | F | F | | | 0 | 1 | F | R | | | 1 | 0 | R | F | | | 1 | 1 | R/F | R/F | | | Note: F = Falling Edge; R = Rising Edge | | | | | PS023702-1004 Preliminary Functional Description #### **Power-On Reset** A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of three conditions: - Power Fail to Power OK status, including Waking up from V_{BO} Standby - Stop-Mode Recovery (if D5 of SMR = 1) - WDT Timeout The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock). #### **HALT Mode** This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode. #### **STOP Mode** This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows: # SMR(0F)0BH - * Default after Power On Reset or Watch-Dog Reset - * * Set after STOP Mode Recovery - * * * At the XOR gate input - * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source. Figure 33. STOP Mode Recovery Register # SCLK/TCLK Divide-by-16 Select (D0) D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0. ### Watch-Dog Timer Mode Register (WDTMR) The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the Z8[®] CPU if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags. The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location <code>0Fh</code>. It is organized as shown in Figure 37. #### WDTMR(0F)0Fh ^{*} Default setting after reset Figure 37. Watch-Dog Timer Mode Register (Write Only) #### WDT Time Select (D0, D1) This bit selects the WDT time period. It is configured as indicated in Table 20. # **WDTMR During STOP (D3)** This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1. ### **EPROM Selectable Options** There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21. **Table 21. EPROM Selectable Options** | Port 00–03 Pull-Ups | On/Off | |-----------------------------------|--------| | Port 04–07 Pull-Ups | On/Off | | Port 10–13 Pull-Ups | On/Off | | Port 14–17 Pull-Ups | On/Off | | Port 20–27 Pull-Ups | On/Off | | EPROM Protection | On/Off | | Watch-Dog Timer at Power-On Reset | On/Off | ## **Voltage Brown-Out/Standby** An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally. # **Expanded Register File Control Registers (0D)** The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43. ^{*} Default setting after reset Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) ^{**}Default setting after reset. Not reset with Stop Mode recovery. # CTR2(0D)02H Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired. #### Codes ZG = ZiLOG General Purpose Family P = OTP 323 = Family Designation L = Voltage Range 2V to 3.6V T = Temperature Range: S = 0 to 70 degrees C (Standard) E = -40 to +105 degrees C (Extended) A = -40 to +125 degrees C (Automotive) P = Package Type: K = Windowed Cerdip P = PDIP H = SSOP S = SOIC ## = Number of Pins CC = Memory Size M = Packaging Options C = Non Lead-Free G = Lead-Free E = CDIP # **Example** # **Precharacterization Product** The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues. ZiLOG, Inc. 532 Race Street San Jose, CA 95126-3432 Telephone: (408) 558-8500 FAX: 408 558-8300 Internet: http://www.ZiLOG.com | D | functional description | |---|---| | DC characteristics 11 | counter/timer functional blocks 38 | | demodulation mode | CTR(D)01h register 33 | | count capture flowchart 42 | CTR0(D)00h register 31 | | flowchart 43 | CTR2(D)02h register 35 | | T16 45 | CTR3(D)03h register 37 | | T8 41 | expanded register file 24 | | description | expanded register file architecture 26 | | functional 23 | HI16(D)09h register 30 | | general 2 | HI8(D)0Bh register 30 | | pin 4 | L08(D)0Ah register 30 | | ' | L0I6(D)08h register 30 | | | program memory map 24 | | E | RAM 23 | | EPROM | register description 63 | | selectable options 62 | register file 28 | | expanded register file 24 | register pointer 27 | | expanded register file architecture 26 | register pointer detail 29 | | expanded register file control registers 69 | SMR2(F)0D1h register 38 | | flag 78 | stack 29 | | interrupt mask register 77 | TC16H(D)07h register 30 | | interrupt priority register 76 | TC16L(D)06h register 31 | | interrupt request register 77 | TC8H(D)05h register 31 | | port 0 and 1 mode register 75 | TC8L(D)04h register 31 | | port 2 configuration register 73 | | | port 3 mode register 74 | C | | port configuration register 73 | G | | register pointer 78 | glitch filter circuitry 38 | | stack pointer high register 79 | | | stack pointer low register 79 | | | stop-mode recovery register 71 | Н | | stop-mode recovery register 2 72 | halt instruction, counter/timer 52 | | T16 control register 67 | | | T8 and T16 common control functions reg- | | | ister 65 | | | T8/T16 control register 68 | input circuit 38 | | TC8 control register 64 | interrupt block diagram, counter/timer 49 | | watch-dog timer register 73 | interrupt types, sources and vectors 50 | | F | ı | | features | low-voltage detection register 63 | | standby modes 1 | iow-voilage detection register 00 | | Clariday illoddo i | | T8 and T16 common control functions 65 Т T8/T16 control 68 T16 transmit mode 44 TC16H(D)07h 30 T16 Capture HI 30 TC16L(D)06h 31 T8 transmit mode 38 TC8 control 64 T8_Capture_HI 30 TC8H(D)05h 31 test conditions, standard 10 TC8L(D)04h 31 test load diagram 10 voltage detection 69 timing diagram, AC 14 watch-dog timer 73 transmit mode flowchart 39 register description Counter/Timer2 LS-Byte Hold 31 Counter/Timer2 MS-Byte Hold 30 V Counter/Timer8 Control 31 VCC 5 Counter/Timer8 High Hold 31 voltage Counter/Timer8 Low Hold 31 brown-out/standby 62 CTR2 Counter/Timer 16 Control 35 detection and flags 63 CTR3 T8/T16 Control 37 voltage detection register 69 Stop Mode Recovery2 38 T16 Capture LO 30 T8 and T16 Common functions 33 W T8_Capture_HI 30 watch-dog timer T8 Capture LO 30 mode registerwatch-dog timer mode regisregister file 28 ter 60 expanded 24 time select 61 register pointer 27 detail 29 reset pin function 23 X resets and WDT 61 XTAL15 XTAL1 pin function 16 XTAL25 S XTAL2 pin function 16 SCLK circuit 56 single-pass mode T16_OUT 45 T8 OUT 41 stack 29 standard test conditions 10 standby modes 1 stop instruction, counter/timer 52 stop mode recovery 2 register 59 source 57 stop mode recovery 2 59 stop mode recovery register 55