




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                           |
|----------------------------|-----------------------------------------------------------|
| Product Status             | Obsolete                                                  |
| Core Processor             | Z8                                                        |
| Core Size                  | 8-Bit                                                     |
| Speed                      | 8MHz                                                      |
| Connectivity               | -                                                         |
| Peripherals                | HLVD, POR, WDT                                            |
| Number of I/O              | 16                                                        |
| Program Memory Size        | 4KB (4K x 8)                                              |
| Program Memory Type        | OTP                                                       |
| EEPROM Size                | -                                                         |
| RAM Size                   | 237 x 8                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                 |
| Data Converters            | -                                                         |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                           |
| Mounting Type              | Through Hole                                              |
| Package / Case             | 20-DIP (0.300", 7.62mm)                                   |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/zgp323lsp2004c |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# List of Tables

| Table 1.  | Features                                       | . 1 |
|-----------|------------------------------------------------|-----|
| Table 2.  | Power Connections                              | . 3 |
| Table 3.  | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | . 5 |
| Table 4.  | 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification | . 6 |
| Table 5.  | 40- and 48-Pin Configuration                   | . 8 |
| Table 6.  | Absolute Maximum Ratings                       | 10  |
| Table 7.  | Capacitance                                    | 11  |
| Table 8.  | DC Characteristics                             | 11  |
| Table 9.  | EPROM/OTP Characteristics                      | 13  |
| Table 10. | AC Characteristics                             | 15  |
| Table 11. | Port 3 Pin Function Summary                    | 21  |
| Table 12. | CTR0(D)00H Counter/Timer8 Control Register     | 31  |
| Table 13. | CTR1(0D)01H T8 and T16 Common Functions        | 33  |
| Table 14. | CTR2(D)02H: Counter/Timer16 Control Register   | 36  |
| Table 15. | CTR3 (D)03H: T8/T16 Control Register           | 37  |
| Table 16. | Interrupt Types, Sources, and Vectors          | 50  |
| Table 17. | IRQ Register                                   | 50  |
| Table 18. | SMR2(F)0DH:Stop Mode Recovery Register 2*      | 56  |
| Table 19. | Stop Mode Recovery Source                      | 58  |
| Table 20. | Watch-Dog Timer Time Select                    | 61  |
| Table 21  | EPROM Selectable Ontions                       | 62  |

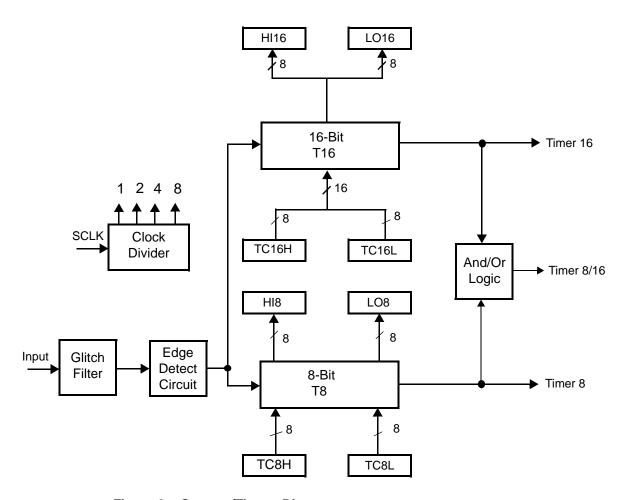



Figure 2. Counter/Timers Diagram

### **Pin Description**

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.



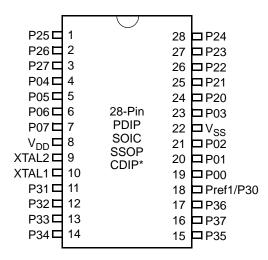



Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP\* Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP\* Pin Identification

| Pin   | Symbol          | Direction    | Description                                              |
|-------|-----------------|--------------|----------------------------------------------------------|
| 1-3   | P25-P27         | Input/Output | Port 2, Bits 5,6,7                                       |
| 4-7   | P04-P07         | Input/Output | Port 0, Bits 4,5,6,7                                     |
| 8     | $V_{DD}$        |              | Power supply                                             |
| 9     | XTAL2           | Output       | Crystal, oscillator clock                                |
| 10    | XTAL1           | Input        | Crystal, oscillator clock                                |
| 11-13 | P31-P33         | Input        | Port 3, Bits 1,2,3                                       |
| 14    | P34             | Output       | Port 3, Bit 4                                            |
| 15    | P35             | Output       | Port 3, Bit 5                                            |
| 16    | P37             | Output       | Port 3, Bit 7                                            |
| 17    | P36             | Output       | Port 3, Bit 6                                            |
| 18    | Pref1/P30       | Input        | Analog ref input; connect to V <sub>CC</sub> if not used |
|       | Port 3 Bit 0    |              | Input for Pref1/P30                                      |
| 19-21 | P00-P02         | Input/Output | Port 0, Bits 0,1,2                                       |
| 22    | V <sub>SS</sub> |              | Ground                                                   |
| 23    | P03             | Input/Output | Port 0, Bit 3                                            |
| 24-28 | P20-P24         | Input/Output | Port 2, Bits 0-4                                         |

Note: \*Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.



Table 8. DC Characteristics (Continued)

|                  |                             |          | T <sub>A</sub> = 0° | C to +7 | 70°C |       |                                                           |       |
|------------------|-----------------------------|----------|---------------------|---------|------|-------|-----------------------------------------------------------|-------|
| Symbol           | Parameter                   | $V_{CC}$ | Min                 | Тур     | Max  | Units | Conditions                                                | Notes |
| I <sub>CC1</sub> | Standby Current             | 2.0      |                     |         | 3    | mΑ    | $V_{IN} = 0V$ , $V_{CC}$ at 8.0MHz                        | 1, 2  |
|                  | (HALT Mode)                 | 3.6      |                     |         | 5    |       | Same as above                                             | 1, 2  |
|                  |                             | 2.0      |                     |         | 2    |       | Clock Divide-by-16 at 8.0MHz                              | 1, 2  |
|                  |                             | 3.6      |                     |         | 4    |       | Same as above                                             | 1, 2  |
| I <sub>CC2</sub> | Standby Current (Stop       | 2.0      |                     |         | 8    | μΑ    | V <sub>IN</sub> = 0 V, V <sub>CC</sub> WDT is not Running | 3     |
|                  | Mode)                       | 3.6      |                     |         | 10   | μΑ    | Same as above                                             | 3     |
|                  |                             | 2.0      |                     |         | 500  | μΑ    | $V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$     | 3     |
|                  |                             | 3.6      |                     |         | 800  | μA    | Same as above                                             | 3     |
| I <sub>LV</sub>  | Standby Current             |          |                     |         | 10   | μΑ    | Measured at 1.3V                                          | 4     |
|                  | (Low Voltage)               |          |                     |         |      |       |                                                           |       |
| V <sub>BO</sub>  | V <sub>CC</sub> Low Voltage |          |                     |         | 2.0  | V     | 8MHz maximum                                              |       |
|                  | Protection                  |          |                     |         |      |       | Ext. CLK Freq.                                            |       |
| $V_{LVD}$        | Vcc Low Voltage             |          |                     | 2.4     |      | V     |                                                           |       |
|                  | Detection                   |          |                     |         |      |       |                                                           |       |
| $V_{HVD}$        | Vcc High Voltage            |          |                     | 2.7     |      | V     |                                                           |       |
|                  | Detection                   |          |                     |         |      |       |                                                           |       |

#### Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- Oscillator stops when V<sub>CC</sub> falls below V<sub>BO</sub> limit.
   It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to the V<sub>DD</sub> and V<sub>SS</sub> pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

### **AC Characteristics**

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

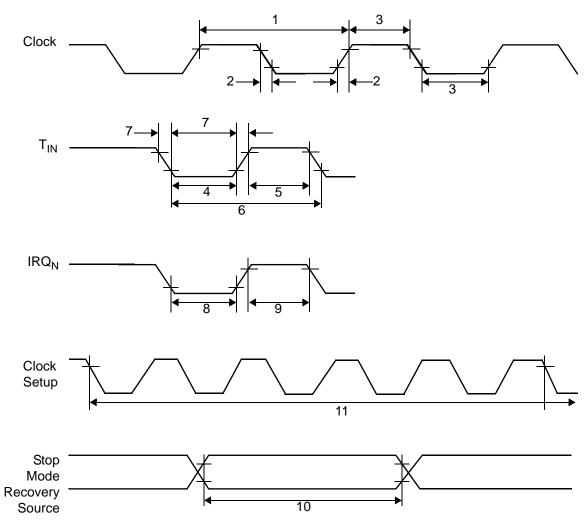
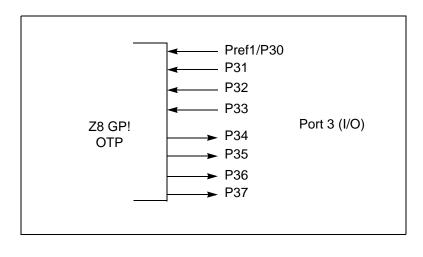




Figure 8. AC Timing Diagram

**Table 10. AC Characteristics** 

|    |                  | T <sub>A</sub> =0°C to +70°C<br>8.0MHz |                                          |                     |         |                      | Watch-Dog<br>Timer |                              |
|----|------------------|----------------------------------------|------------------------------------------|---------------------|---------|----------------------|--------------------|------------------------------|
| No | Symbol           | Parameter                              | V <sub>CC</sub>                          | Minimum             | Maximum | Units                | Notes              | Mode<br>Register<br>(D1, D0) |
| 1  | ТрС              | Input Clock Period                     | 2.0-3.6                                  | 121                 | DC      | ns                   | 1                  |                              |
| 2  | TrC,TfC          | Clock Input Rise and Fall Times        | 2.0-3.6                                  |                     | 25      | ns                   | 1                  |                              |
| 3  | TwC              | Input Clock Width                      | 2.0-3.6                                  | 37                  |         | ns                   | 1                  |                              |
| 4  | TwTinL           | Timer Input<br>Low Width               | 2.0<br>3.6                               | 100<br>70           |         | ns                   | 1                  |                              |
| 5  | TwTinH           | Timer Input High<br>Width              | 2.0-3.6                                  | 3ТрС                |         |                      | 1                  |                              |
| 6  | TpTin            | Timer Input Period                     | 2.0-3.6                                  | 8ТрС                |         |                      | 1                  |                              |
| 7  | TrTin,TfTin      | Timer Input Rise and Fall Timers       | 2.0-3.6                                  |                     | 100     | ns                   | 1                  |                              |
| 8  | TwlL             | Interrupt Request<br>Low Time          | 2.0<br>3.6                               | 100<br>70           |         | ns                   | 1, 2               |                              |
| 9  | TwlH             | Interrupt Request<br>Input High Time   | 2.0-3.6                                  | 5TpC                |         |                      | 1, 2               |                              |
| 10 | Twsm             | Stop-Mode<br>Recovery Width            | 2.0-3.6                                  | 12                  |         | ns                   | 3                  |                              |
|    |                  | Spec                                   |                                          | 10TpC               |         |                      | 4                  |                              |
| 11 | Tost             | Oscillator<br>Start-Up Time            | 2.0-3.6                                  |                     | 5TpC    |                      | 4                  |                              |
| 12 | Twdt             | Watch-Dog Timer<br>Delay Time          | 2.0-3.6<br>2.0-3.6<br>2.0-3.6<br>2.0-3.6 | 5<br>10<br>20<br>80 |         | ms<br>ms<br>ms<br>ms |                    | 0, 0<br>0, 1<br>1, 0<br>1, 1 |
| 13 | T <sub>POR</sub> | Power-On Reset                         | 2.0-3.6                                  | 2.5                 | 10      | ms                   |                    |                              |

- 1. Timing Reference uses 0.9  $V_{CC}$  for a logic 1 and 0.1  $V_{CC}$  for a logic 0. 2. Interrupt request through Port 3 (P33–P31).
- 3. SMR D5 = 1.
- 4. SMR D5 = 0.



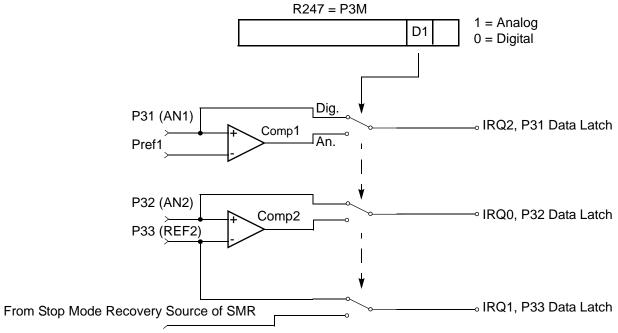



Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

#### Capture\_INT\_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

#### **Counter INT Mask**

Set this bit to allow an interrupt when T8 has a timeout.

#### P34\_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

#### T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 13 lists and briefly describes the fields for this register.

Table 13. CTR1(0D)01H T8 and T16 Common Functions

| Field             | Bit Position |     | Value | Description       |
|-------------------|--------------|-----|-------|-------------------|
| Mode              | 7            | R/W | 0*    | Transmit Mode     |
|                   |              |     |       | Demodulation Mode |
| P36_Out/          | -6           | R/W |       | Transmit Mode     |
| Demodulator_Input |              |     | 0*    | Port Output       |
|                   |              |     | 1     | T8/T16 Output     |
|                   |              |     |       | Demodulation Mode |
|                   |              |     | 0     | P31               |
|                   |              |     | 1     | P20               |
| T8/T16_Logic/     | 54           | R/W |       | Transmit Mode     |
| Edge _Detect      |              |     | 00**  | AND               |
|                   |              |     | 01    | OR                |
|                   |              |     | 10    | NOR               |
|                   |              |     | 11    | NAND              |
|                   |              |     |       | Demodulation Mode |
|                   |              |     | 00**  | Falling Edge      |
|                   |              |     | 01    | Rising Edge       |
|                   |              |     | 10    | Both Edges        |
|                   |              |     | 11    | Reserved          |

When T8 is enabled, the output T8\_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8\_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8\_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8\_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8\_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8\_OUT level and repeats the cycle. See Figure 20.

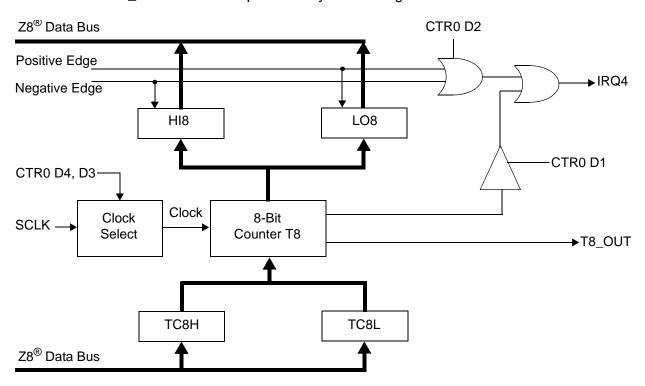



Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

<u>^</u>

Caution:

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.



**Note:** The letter h denotes hexadecimal values.

Transition from 0 to FFh is not a timeout condition.



**Caution:** Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

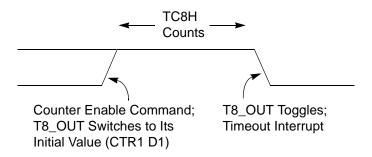



Figure 21. T8\_OUT in Single-Pass Mode

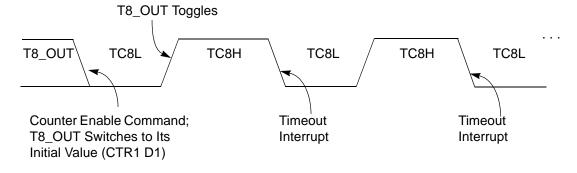



Figure 22. T8\_OUT in Modulo-N Mode

#### **T8 Demodulation Mode**

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put



Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFEH. Transition from 0 to FFFFH is not a timeout condition.

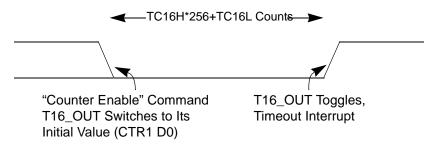



Figure 26. T16\_OUT in Single-Pass Mode

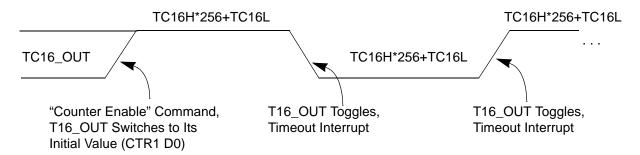
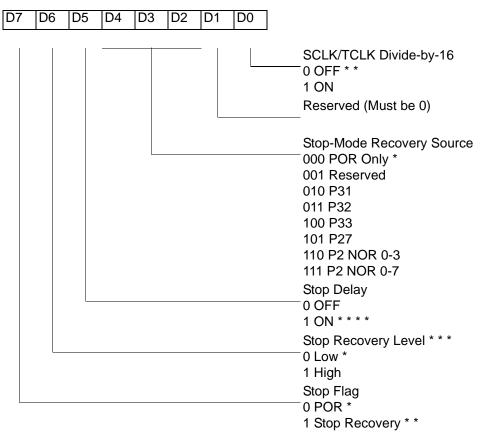



Figure 27. T16\_OUT in Modulo-N Mode

#### **T16 DEMODULATION Mode**


The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

#### If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

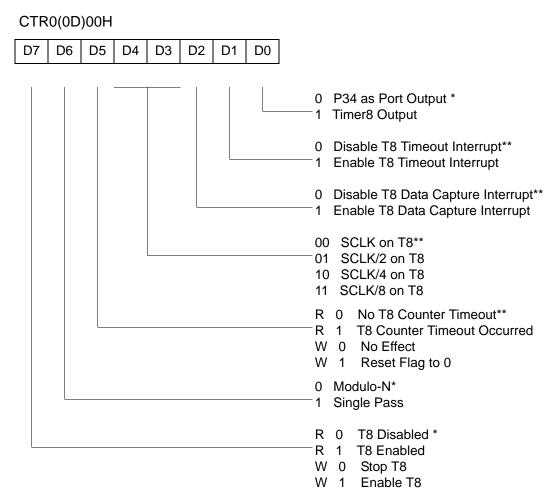
This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

#### SMR(0F)0BH



- \* Default after Power On Reset or Watch-Dog Reset
- \* \* Set after STOP Mode Recovery
- \* \* \* At the XOR gate input
- \* \* \* \* Default setting after reset. Must be 1 if using a crystal or resonator clock source.

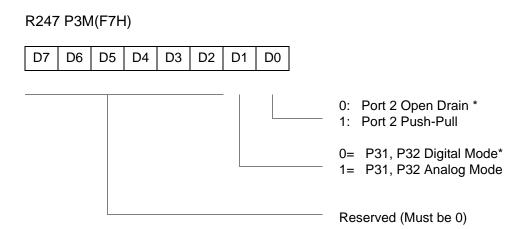
Figure 33. STOP Mode Recovery Register


#### SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.



### **Expanded Register File Control Registers (0D)**


The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.



<sup>\*</sup> Default setting after reset

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

<sup>\*\*</sup>Default setting after reset. Not reset with Stop Mode recovery.



<sup>\*</sup> Default setting after reset. Not reset with Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

## **Package Information**

Package information for all versions of Z8 GP<sup>TM</sup> OTP MCU Family are depicted in Figures 58 through Figure 68.

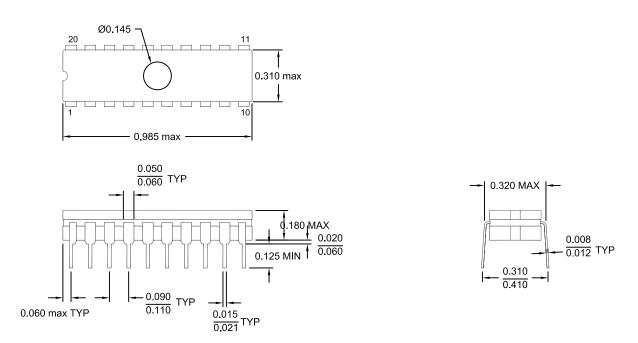
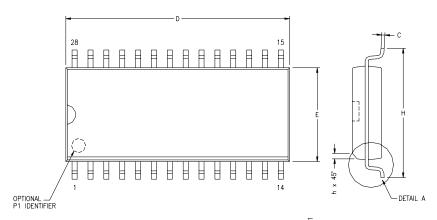
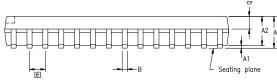





Figure 58. 20-Pin CDIP Package



| CVMDOI | MILLI | METER | INCH |      |  |
|--------|-------|-------|------|------|--|
| SYMBOL | MIN   | MAX   | MIN  | MAX  |  |
| A      | 2.40  | 2.64  | .094 | .104 |  |
| A1     | 0.10  | 0.30  | .004 | .012 |  |
| A2     | 2.24  | 2.44  | .088 | .096 |  |
| В      | 0.36  | 0.46  | .014 | .018 |  |
| С      | 0.23  | 0.30  | .009 | .012 |  |
| D      | 17.78 | 18.00 | .700 | .710 |  |
| E      | 7.40  | 7.60  | .291 | .299 |  |
| е      | 1.27  | BSC   | .050 | BSC  |  |
| Н      | 10.00 | 10.65 | .394 | .419 |  |
| h      | 0.30  | 0.71  | .012 | .028 |  |
| L      | 0.61  | 1.00  | .024 | .039 |  |
| Q1     | 0.97  | 1.09  | .038 | .043 |  |



CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

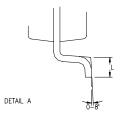



Figure 63. 28-Pin SOIC Package Diagram

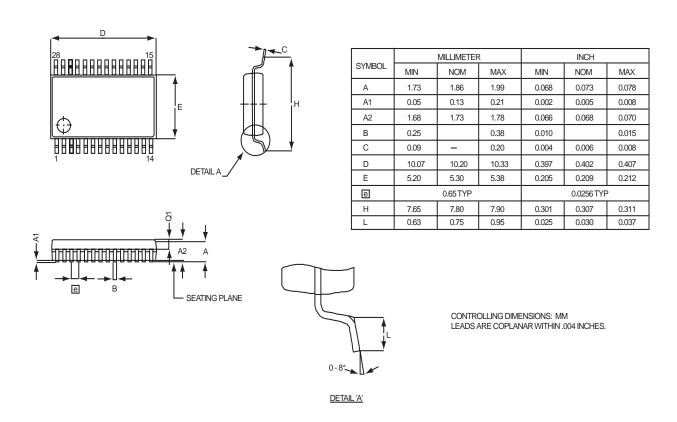
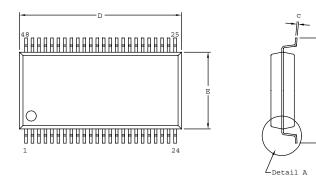




Figure 65. 28-Pin SSOP Package Diagram



| SYMBOL | MILLI | METER     | INCH  |        |
|--------|-------|-----------|-------|--------|
| SIMBOL | MIN   | MAX       | MIN   | MAX    |
| A      | 2.41  | 2.79      | 0.095 | 0.110  |
| A1     | 0.23  | 0.38      | 0.009 | 0.015  |
| A2     | 2.18  | 2.39      | 0.086 | 0.094  |
| ь      | 0.20  | 0.34      | 0.008 | 0.0135 |
| С      | 0.13  | 0.25      | 0.005 | 0.010  |
| D      | 15.75 | 16.00     | 0.620 | 0.630  |
| E      | 7.39  | 7.59      | 0.291 | 0.299  |
| e      | 0.6   | 0.635 BSC |       | 25 BSC |
| Н      | 10.16 | 10.41     | 0.400 | 0.410  |
| L      | 0.51  | 1.016     | 0.020 | 0.040  |

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

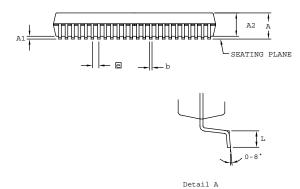



Figure 68. 48-Pin SSOP Package Design

**Note:** Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.



| 4KB Standard Temperature: 0° to +70°C |                    |                |                    |  |  |
|---------------------------------------|--------------------|----------------|--------------------|--|--|
| Part Number                           | Description        | Part Number    | Description        |  |  |
| ZGP323LSH4804C                        | 48-pin SSOP 4K OTP | ZGP323LSS2804C | 28-pin SOIC 4K OTP |  |  |
| ZGP323LSP4004C                        | 40-pin PDIP 4K OTP | ZGP323LSH2004C | 20-pin SSOP 4K OTP |  |  |
| ZGP323LSH2804C                        | 28-pin SSOP 4K OTP | ZGP323LSP2004C | 20-pin PDIP 4K OTP |  |  |
| ZGP323LSP2804C                        | 28-pin PDIP 4K OTP | ZGP323LSS2004C | 20-pin SOIC 4K OTP |  |  |

| 4KB Extended Temperature: -40° to +105°C |                    |                |                    |  |  |
|------------------------------------------|--------------------|----------------|--------------------|--|--|
| Part Number                              | Description        | Part Number    | Description        |  |  |
| ZGP323LEH4804C                           | 48-pin SSOP 4K OTP | ZGP323LES2804C | 28-pin SOIC 4K OTP |  |  |
| ZGP323LEP4004C                           | 40-pin PDIP 4K OTP | ZGP323LEH2004C | 20-pin SSOP 4K OTP |  |  |
| ZGP323LEH2804C                           | 28-pin SSOP 4K OTP | ZGP323LEP2004C | 20-pin PDIP 4K OTP |  |  |
| ZGP323LEP2804C                           | 28-pin PDIP 4K OTP | ZGP323LES2004C | 20-pin SOIC 4K OTP |  |  |

| 4KB Automotive Temperature: -40° to +125°C |                    |                |                    |  |  |
|--------------------------------------------|--------------------|----------------|--------------------|--|--|
| Part Number                                | Description        | Part Number    | Description        |  |  |
| ZGP323LAH4804C                             | 48-pin SSOP 4K OTP | ZGP323LAS2804C | 28-pin SOIC 4K OTP |  |  |
| ZGP323LAP4004C                             | 40-pin PDIP 4K OTP | ZGP323LAH2004C | 20-pin SSOP 4K OTP |  |  |
| ZGP323LAH2804C                             | 28-pin SSOP 4K OTP | ZGP323LAP2004C | 20-pin PDIP 4K OTP |  |  |
| ZGP323LAP2804C                             | 28-pin PDIP 4K OTP | ZGP323LAS2004C | 20-pin SOIC 4K OTP |  |  |

Note: Replace C with G for Lead-Free Packaging

Additional Components

| Part Number    | Description         | Part Number    | Description        |
|----------------|---------------------|----------------|--------------------|
| ZGP323ICE01ZEM | Emulator/programmer | ZGP32300100ZPR | Programming System |



### **Precharacterization Product**

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues.

ZiLOG, Inc.

532 Race Street

San Jose, CA 95126-3432

Telephone: (408) 558-8500

FAX: 408 558-8300

Internet: <a href="http://www.ZiLOG.com">http://www.ZiLOG.com</a>