

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsp2808c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 1 lists the features of $ZiLOG^{(R)}$'s Z8 GP^{TM} OTP MCU Family family members.

Table 1. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323L OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V–3.6V

- Low power consumption–6mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP-2µA (typical)
 - HALT-0.8mA (typical)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

Z8 GP[™] OTP MCU Family Product Specification

40-Pin PDIP/CDIP* #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC

Table 5. 40- and 48-Pin Configuration (Continued)

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

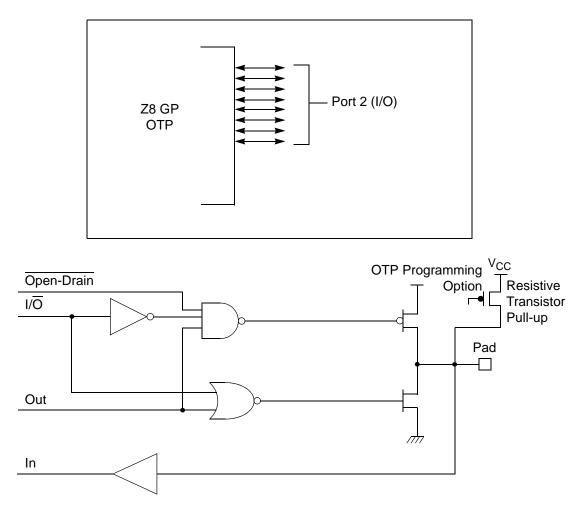


Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 20. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP^{TM} asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP^{TM} does not assert the RESET pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

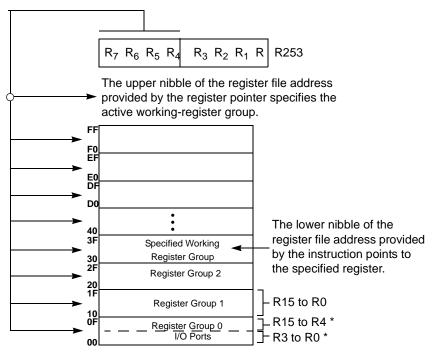
Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

Z8 GP[™] OTP MCU Family Product Specification



Z8 [®] Standard (Control Registers	Reset Condition
	Expanded Reg. Bank 0/Group 15*	* D7 D6 D5 D4 D3 D2 D1 D0
	FF SPL	
	FE SPH	U U U U U U U U
Register Pointer	FD RP	0 0 0 0 0 0 0
7 6 5 4 3 2 1 0	FC FLAGS	U U U U U U U U
	FB IMR	U U U U U U U U
Working Register Expanded Register	er FA IRQ	0 0 0 0 0 0 0 0
Group Pointer Bank Pointer	F9 IPR	U U U U U U U U
	F8 P01M	1 1 0 0 1 1 1 1
	* F7 P3M	00000000
	* F6 P2M	1 1 1 1 1 1 1 1
	F5 Reserved	U U U U U U U U
	F4 Reserved	U U U U U U U U
	F3 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
Register File (Bank 0)** /	F2 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
FF F0	F1 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
F0	F0 Reserved	U U U U U U U U
	Expanded Reg. Bank F/Group 0**	
	(F) OF WDTMR	UU001101
	(F) 0E Reserved	
	* (F) 0D SMR2	0 0 0 0 0 0 0 0
	(F) 0C Reserved	
7F	↑ (F) 0B SMR	U 0 1 0 0 0 U 0
/F	(F) 0A Reserved	
	(F) 09 Reserved	
	(F) 08 Reserved	
	(F) 07 Reserved	
	(F) 06 Reserved	
	(F) 05 Reserved	
₀₅ ┝━━━━━━┓┛┙	(F) 04 Reserved	
	(F) 03 Reserved	
	(F) 02 Reserved	
	(F) 01 Reserved	
Expanded Reg. Bank 0/Group (0)	(F) 00 PCON	1 1 1 1 1 1 1 0
(0) 03 P3 0 U	Expanded Reg. Bank D/Group 0	
	(D) 0C LVD	$\cup \cup \cup \cup \cup \cup \cup 0$
(0) 02 P2 U	* (D) 0B HI8	000000000
* (0) 01 P1 U	* (D) 0A LO8	000000000
	* (D) 09 HI16	0 0 0 0 0 0 0 0
(0) 00 P0 U	* (D) 08 LO16	0 0 0 0 0 0 0 0
U = Unknown	* (D) 07 TC16H	0 0 0 0 0 0 0 0
* Is not reset with a Stop-Mode Recovery	* (D) 06 TC16L	0 0 0 0 0 0 0
** All addresses are in hexadecimal	* (D) 05 TC8H	0 0 0 0 0 0 0
↑ Is not reset with a Stop-Mode Recovery, except Bit 0	* (D) 04 TC8L	0 0 0 0 0 0 0 0
↑↑ Bit 5 Is not reset with a Stop-Mode Recovery	1↑ (D) 03 CTR3	0 0 0 1 1 1 1 1
↑↑↑ Bits 5,4,3,2 not reset with a Stop-Mode Recovery	↑↑↑ (D) 02 CTR2	0 0 0 0 0 0 0 0
↑↑↑↑ Bits 5 and 4 not reset with a Stop-Mode Recovery	^^↑↑↑ (D) 01 CTR1	0 0 0 0 0 0 0
↑↑↑↑↑ Bits 5,4,3,2,1 not reset with a Stop-Mode Recovery	↑↑↑↑↑ (D) 00 CTR0	000000000
		-

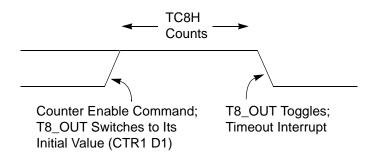
Figure 15. Expanded Register File Architecture

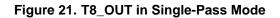
* RP = 00: Selects Register Bank 0, Working Register Group 0

Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.


Note: The letter h denotes hexadecimal values.


Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

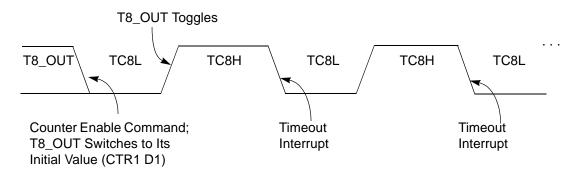


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

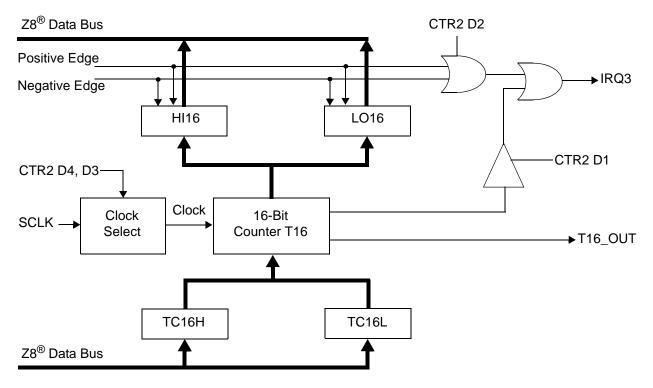


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

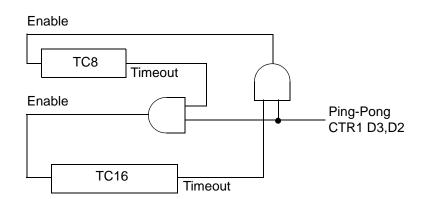
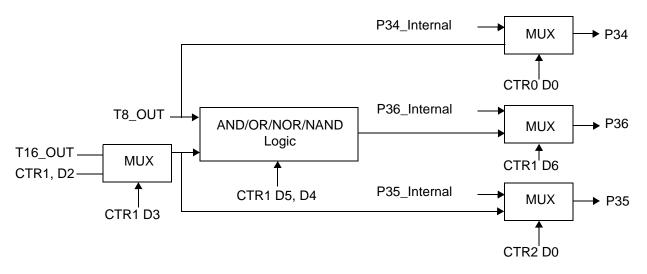



Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

Table 19. Stop Mode Recovery Source

SMR:432		Operation		
D4	D3	D2	Description of Action	
0	0	0	POR and/or external reset recovery	
0	0	1	Reserved	
0	1	0	P31 transition	
0	1	1	P32 transition	
1	0	0	P33 transition	
1	0	1	P27 transition	
1	1	0	Logical NOR of P20 through P23	
1	1	1	Logical NOR of P20 through P27	

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

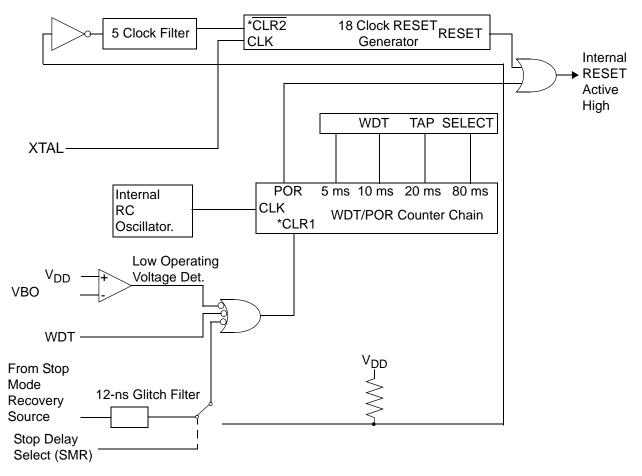

61

Table 20. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High input translation.

Figure 38. Resets and WDT

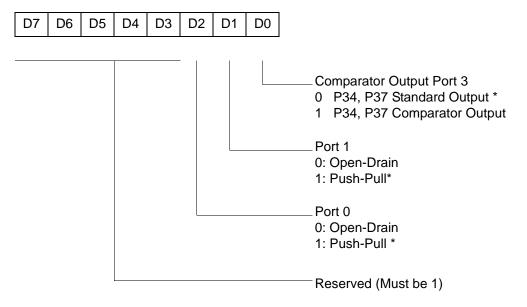
WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21.

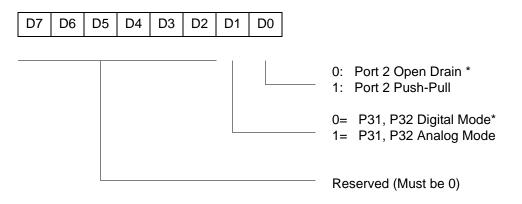
Table 21. EPROM Selectable Options


Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.

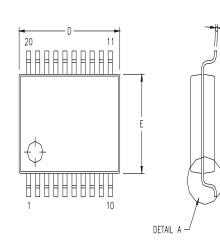
PCON(0F)00H



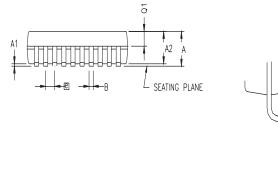
* Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

R247 P3M(F7H)



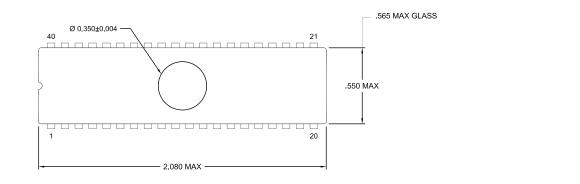
* Default setting after reset. Not reset with Stop Mode recovery.


Figure 49. Port 3 Mode Register (F7H: Write Only)

Z8 GP[™] OTP MCU Family Product Specification

CVALDOL	MILLIMETER		INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e		0.65 BSC		0.0256 BSC		;
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.


Figure 61. 20-Pin SSOP Package Diagram

Н

0-"8

DETAIL A

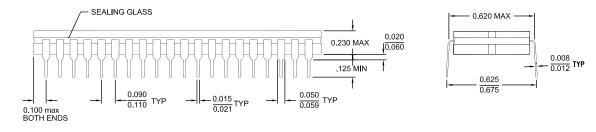
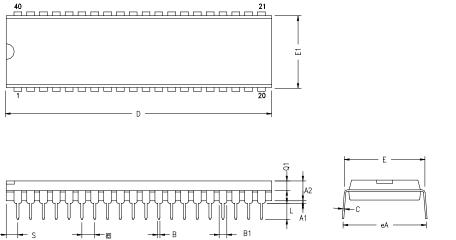



Figure 66. 40-Pin CDIP Package

MILLIMETER INCH SYMBOL MIN MAX MIN MAX .040 A1 0.51 .020 A2 3.94 .125 .155 3.18 В 0.38 0.53 .015 .021 B1 .040 .060 1.02 1.52 С 0.38 .009 .015 0.23 D 2.050 2.070 52.07 52.58 Ε 15.24 15.75 .600 .620 .100 TYP E1 13.59 .59 14.22 2.54 TYP .535 e .660 eA 15.49 16.76 .610 3.81 .120 .150 L 3.05 Q1 1.91 .075 1.40 .055 S .060 1.52 2.29 .090

Figure 67. 40-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

Ordering Information

32KB Standard Temperature: 0° to +70°C

	•		
Part Number	Description	Part Number	Description
ZGP323LSH4832C	48-pin SSOP 32K OTP	ZGP323LSS2832C	28-pin SOIC 32K OTP
ZGP323LSP4032C	40-pin PDIP 32K OTP	ZGP323LSH2032C	20-pin SSOP 32K OTP
ZGP323LSH2832C	28-pin SSOP 32K OTP	ZGP323LSP2032C	20-pin PDIP 32K OTP
ZGP323LSP2832C	28-pin PDIP 32K OTP	ZGP323LSS2032C	20-pin SOIC 32K OTP
ZGP323LSK2032E	20-pin CDIP 32K OTP	ZGP323LSK4032E	40-pin CDIP 32K OTP
		ZGP323LSK2832E	28-pin CDIP 32K OTP

32KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4832C	48-pin SSOP 32K OTP	ZGP323LES2832C	28-pin SOIC 32K OTP
ZGP323LEP4032C	40-pin PDIP 32K OTP	ZGP323LEH2032C	20-pin SSOP 32K OTP
ZGP323LEH2832C	28-pin SSOP 32K OTP	ZGP323LEP2032C	20-pin PDIP 32K OTP
ZGP323LEP2832C	28-pin PDIP 32K OTP	ZGP323LES2032C	20-pin SOIC 32K OTP

32KB Automotive Temperature: -40° to +125°C

	•	1		
Part Number	Description	Part Number	Description	
ZGP323LAH4832C	48-pin SSOP 32K OTP	ZGP323LAS2832C	28-pin SOIC 32K OTP	
ZGP323LAP4032C	40-pin PDIP 32K OTP	ZGP323LAH2032C	20-pin SSOP 32K OTP	
ZGP323LAH2832C	28-pin SSOP 32K OTP	ZGP323LAP2032C	20-pin PDIP 32K OTP	
ZGP323LAP2832C	28-pin PDIP 32K OTP	ZGP323LAS2032C	20-pin SOIC 32K OTP	
Note: Replace C with G for Lead-Free Packaging				

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4816C	48-pin SSOP 16K OTP	ZGP323LSS2816C	28-pin SOIC 16K OTP
ZGP323LSP4016C	40-pin PDIP 16K OTP	ZGP323LSH2016C	20-pin SSOP 16K OTP
ZGP323LSH2816C	28-pin SSOP 16K OTP	ZGP323LSP2016C	20-pin PDIP 16K OTP
ZGP323LSP2816C	28-pin PDIP 16K OTP	ZGP323LSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4816C	48-pin SSOP 16K OTP	ZGP323LES2816C	28-pin SOIC 16K OTP
ZGP323LEP4016C	40-pin PDIP 16K OTP	ZGP323LES2016C	20-pin SOIC 16K OTP
ZGP323LEH2816C	28-pin SSOP 16K OTP	ZGP323LEH2016C	20-pin SSOP 16K OTP
ZGP323LEP2816C	28-pin PDIP 16K OTP	ZGP323LEP2016C	20-pin PDIP 16K OTP

16KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description
ZGP323LAH4816C	48-pin SSOP 16K OTP	ZGP323LAS2816C	28-pin SOIC 16K OTP
ZGP323LAP4016C	40-pin PDIP 16K OTP	ZGP323LAH2016C	20-pin SSOP 16K OTP
ZGP323LAH2816C	28-pin SSOP 16K OTP	ZGP323LAP2016C	20-pin PDIP 16K OTP
ZGP323LAP2816C	28-pin PDIP 16K OTP	ZGP323LAS2016C	20-pin SOIC 16K OTP
Note: Replace C with G for Lead-Free Packaging			

PS023702-1004

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues.

ZiLOG, Inc.

532 Race Street San Jose, CA 95126-3432 Telephone: (408) 558-8500 FAX: 408 558-8300 Internet: <u>http://www.ZiLOG.com</u>