

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsp2816g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

۷

ZiLOG

Figure 35. Stop Mode Recovery Source	57
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)	. 59
Figure 37. Watch-Dog Timer Mode Register (Write Only)	60
Figure 38. Resets and WDT	61
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted	d) 64
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) .	65
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)	. 67
Figure 42. T8/T16 Control Register (0D)03H: Read/Write	
(Except Where Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)	70
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	71
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only	/) 72
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	73
Figure 48. Port 2 Mode Register (F6H: Write Only)	73
Figure 49. Port 3 Mode Register (F7H: Write Only)	74
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	75
Figure 51. Interrupt Priority Register (F9H: Write Only)	76
Figure 52. Interrupt Request Register (FAH: Read/Write)	77
Figure 53. Interrupt Mask Register (FBH: Read/Write)	77
Figure 54. Flag Register (FCH: Read/Write)	78
Figure 55. Register Pointer (FDH: Read/Write)	78
Figure 56. Stack Pointer High (FEH: Read/Write)	79
Figure 57. Stack Pointer Low (FFH: Read/Write)	79
Figure 58. 20-Pin CDIP Package	80
Figure 59. 20-Pin PDIP Package Diagram	81
Figure 60. 20-Pin SOIC Package Diagram	81
Figure 61. 20-Pin SSOP Package Diagram	82
Figure 62. 28-Pin CDIP Package	83
Figure 63. 28-Pin SOIC Package Diagram	84
Figure 64. 28-Pin PDIP Package Diagram	85
Figure 65. 28-Pin SSOP Package Diagram	86
Figure 66. 40-Pin CDIP Package	87
Figure 67. 40-Pin PDIP Package Diagram	87
Figure 68. 48-Pin SSOP Package Design	88

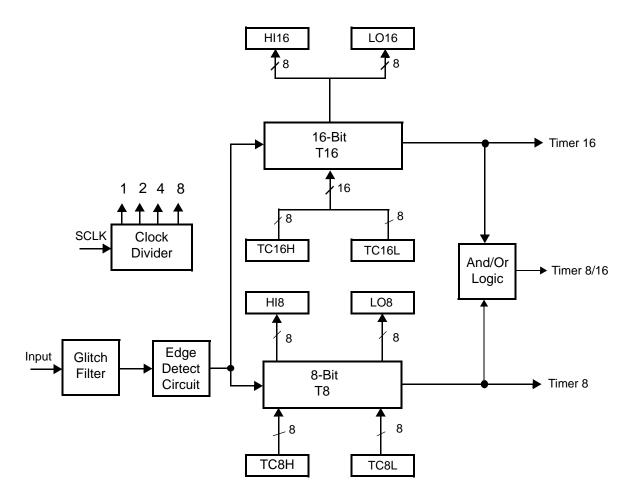


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

P25 [1 P26 [2 P27 [3 P04 [4 P05 [5 P06 [6 P07 [7 V _{DD} [8 XTAL2 [9 XTAL1 [10 P31 [11 P32 [12 P33 [13 P34 [14	28-Pin PDIP SOIC SSOP CDIP*	28 □ P24 27 □ P23 26 □ P22 25 □ P21 24 □ P20 23 □ P03 22 □ V _{SS} 21 □ P02 20 □ P01 19 □ P00 18 □ Pref1/P30 17 □ P36 16 □ P37 15 □ P35
---	---	--

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identifica

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

12

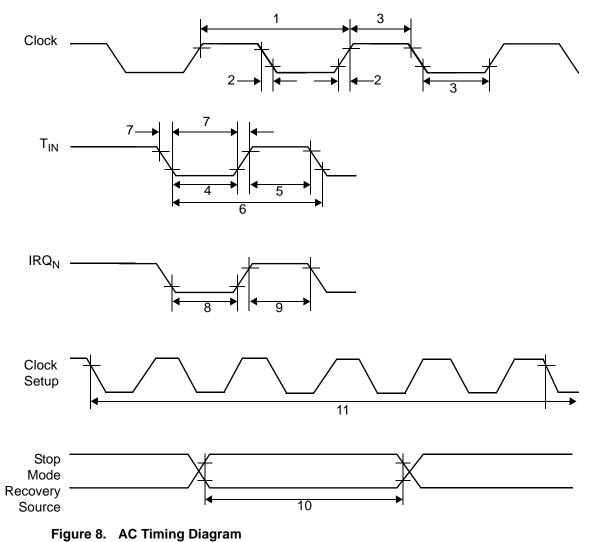
$T_{\Delta} = 0^{\circ}C \text{ to } +70^{\circ}C$								
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	$V_{IN} = 0V, V_{CC}$ at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μA	Same as above	3
		2.0			500	μΑ	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current				10	μA	Measured at 1.3V	4
	(Low Voltage)							
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
212	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							
Notos:								

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.


3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

AC Characteristics

Figure 8 and Table 10 describe the Alternating Current (AC) characteristics.

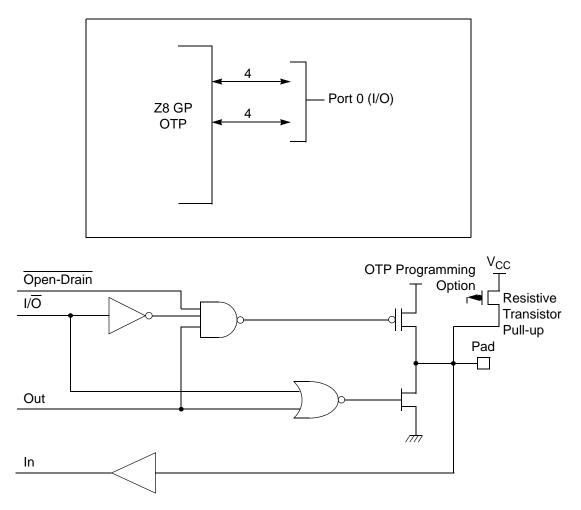


Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to be input following an SMR.

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 20. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP^{TM} asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP^{TM} does not assert the RESET pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

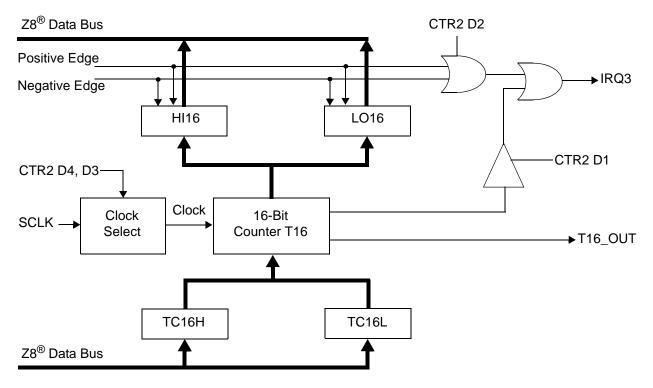


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57.

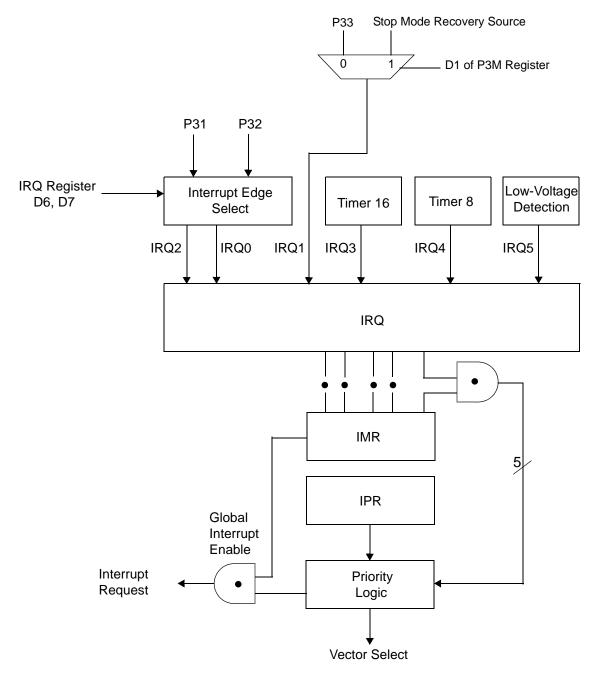


Figure 30. Interrupt Block Diagram

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

Z8 GP[™] OTP MCU Family Product Specification

CTR1(0D)01H D7 D6 D5 D3 D1 D0 D4 D2 Transmit Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially **Demodulation Mode** R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially **Demodulation Mode** R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 **Demodulation Mode** 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND **Demodulation Mode** 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT **Demodulation Mode** 0 P31 as Demodulator Input 1 P20 as Demodulator Input Transmit/Demodulation Mode 0 Transmit Mode * * Default setting after reset **Default setting after reset. Not reset with Stop Mode 1 Demodulation Mode recovery

CTR3(0D)03H

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved No effect when written Always reads 11111
								Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode
								T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled W0 Stop T ₈ W1 Enable T ₈
								T ₁₆ Enable R 0* T ₁₆ Disabled R 1 T ₁₆ Enabled W 0 Stop T ₁₆ W 1 Enable T ₁₆

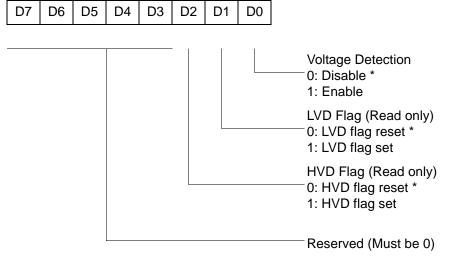

* Default setting after reset. ** Default setting after reset. Not reset with Stop Mode recovery.

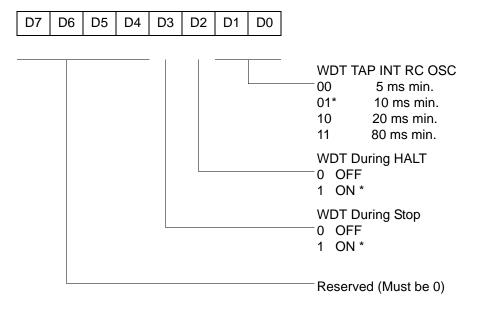
Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

LVD(0D)0CH

* Default

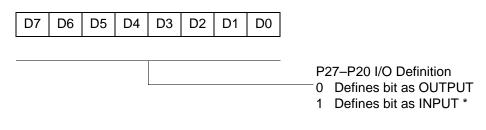
Figure 43. Voltage Detection Register


Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

WDTMR(0F)0FH



* Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)

* Default setting after reset

Figure 48. Port 2 Mode Register (F6H: Write Only)

ZILOG

R249 IPR(F9H)

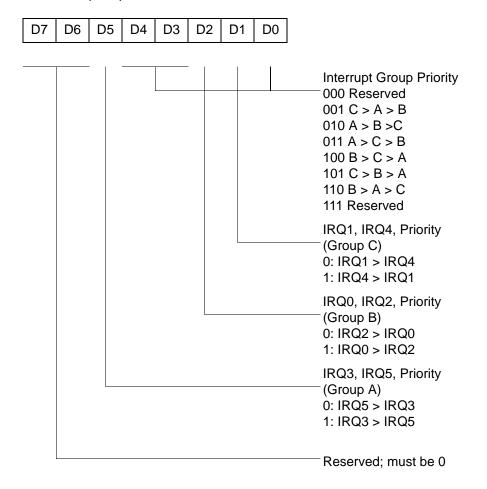
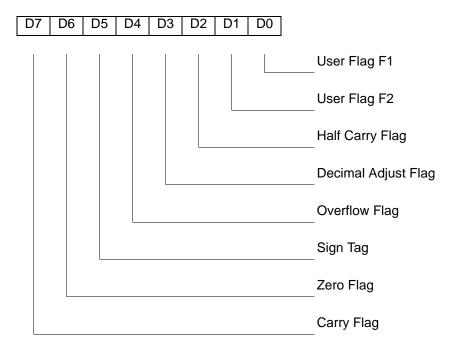
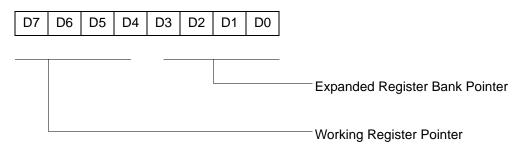



Figure 51. Interrupt Priority Register (F9H: Write Only)



R252 Flags(FCH)

Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

Z i L 0 G 91

8KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C

Description	Part Number	Description
48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP
40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP
28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP
28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP
	48-pin SSOP 8K OTP 40-pin PDIP 8K OTP 28-pin SSOP 8K OTP	48-pin SSOP 8K OTP ZGP323LES2808C 40-pin PDIP 8K OTP ZGP323LEH2008C 28-pin SSOP 8K OTP ZGP323LEP2008C

8KB Automotive Temperature: -40° to +125°C

	•		
Part Number	Description	Part Number	Description
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP

Note: Replace C with G for Lead-Free Packaging

Z8 GP[™] OTP MCU Family Product Specification

Index

Numerics

16-bit counter/timer circuits 44 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOICpackage diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 8-bit counter/timer circuits 40

Α

absolute maximum ratings 10 AC characteristics 14 timing diagram 14 address spaces, basic 2 architecture 2 expanded register file 26

В

basic address spaces 2 block diagram, ZLP32300 functional 3

С

capacitance 11 characteristics AC 14 DC 11 clock 51 comparator inputs/outputs 23 configuration port 0 17 port 1 18 port 2 19 port 3 20 port 3 counter/timer 22 counter/timer 16-bit circuits 44 8-bit circuits 40 brown-out voltage/standby 62 clock 51 demodulation mode count capture flowchart 42 demodulation mode flowchart 43 EPROM selectable options 62 glitch filter circuitry 38 halt instruction 52 input circuit 38 interrupt block diagram 49 interrupt types, sources and vectors 50 oscillator configuration 51 output circuit 47 ping-pong mode 46 port configuration register 53 resets and WDT 61 SCLK circuit 56 stop instruction 52 stop mode recovery register 55 stop mode recovery register 2 59 stop mode recovery source 57 T16 demodulation mode 45 T16 transmit mode 44 T16_OUT in modulo-N mode 45 T16 OUT in single-pass mode 45 T8 demodulation mode 41 T8 transmit mode 38 T8 OUT in modulo-N mode 41 T8 OUT in single-pass mode 41 transmit mode flowchart 39 voltage detection and flags 63 watch-dog timer mode register 60 watch-dog timer time select 61 CTR(D)01h T8 and T16 Common Functions 33

Z8 GP[™] OTP MCU Family Product Specification

Μ

memory, program 23 modulo-N mode T16_OUT 45 T8_OUT 41

0

oscillator configuration 51 output circuit, counter/timer 47

Ρ

package information 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOIC package diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 16 port 0 (P17 - P10) 17 port 0 configuration 17 port 1 configuration 18 port 2 (P27 - P20) 18 port 2 (P37 - P30) 19 port 2 configuration 19 port 3 configuration 20 port 3 counter/timer configuration 22 reset) 23 XTAL1 (time-based input 16 XTAL2 (time-based output) 16 ping-pong mode 46 port 0 configuration 17 port 0 pin function 16

port 1 configuration 18 port 1 pin function 17 port 2 configuration 19 port 2 pin function 18 port 3 configuration 20 port 3 pin function 19 port 3counter/timer configuration 22 port configuration register 53 power connections 3 power supply 5 precharacterization product 95 program memory 23 map 24

R

ratings, absolute maximum 10 register 59 CTR(D)01h 33 CTR0(D)00h 31 CTR2(D)02h 35 CTR3(D)03h 37 flag 78 HI16(D)09h 30 HI8(D)0Bh 30 interrupt priority 76 interrupt request 77 interruptmask 77 L016(D)08h 30 L08(D)0Ah 30 LVD(D)0Ch 63 pointer 78 port 0 and 1 75 port 2 configuration 73 port 3 mode 74 port configuration 53, 73 SMR2(F)0Dh 38 stack pointer high 79 stack pointer low 79 stop mode recovery 55 stop mode recovery 2 59 stop-mode recovery 71 stop-mode recovery 2 72 T16 control 67