

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsp4004c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

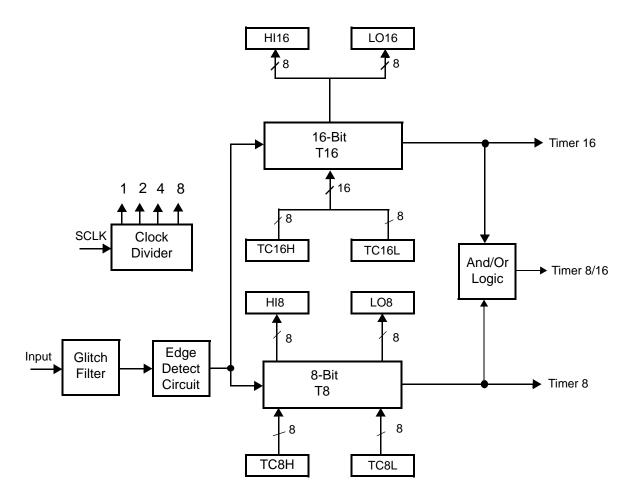


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

P25 1 P26 2 P27 3 P04 4 P05 5 P06 6 P07 7 V _{DD} 8 XTAL2 9 XTAL1 10 P31 11 P32 12 P33 13 P34 14	28-Pin PDIP SOIC SSOP CDIP*	28 □ P24 27 □ P23 26 □ P22 25 □ P21 24 □ P20 23 □ P03 22 □ V _{SS} 21 □ P02 20 □ P01 19 □ P00 18 □ Pref1/P30 17 □ P36 16 □ P37 15 □ P35
---	---	--

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identifica

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

12

			T _A = 0°	C to +	70°C			
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
I _{CC1}	Standby Current	2.0			3	mA	$V_{IN} = 0V, V_{CC}$ at 8.0MHz	1, 2
	(HALT Mode)	3.6			5		Same as above	1, 2
		2.0			2		Clock Divide-by-16 at 8.0MHz	1, 2
		3.6			4		Same as above	1, 2
I _{CC2}	Standby Current (Stop	2.0			8	μΑ	V _{IN} = 0 V, V _{CC} WDT is not Running	3
	Mode)	3.6			10	μA	Same as above	3
		2.0			500	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6			800	μA	Same as above	3
I _{LV}	Standby Current				10	μΑ	Measured at 1.3V	4
	(Low Voltage)							
V _{BO}	V _{CC} Low Voltage				2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	Vcc Low Voltage			2.4		V		
212	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							
Notos:								

Table 8. DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit. 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to the V_{DD} and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

13

Table 9. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	25			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

		T _A =0°C to +70°C 8.0MHz						Watch-Dog Timer
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	[−] Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–3.6	12		ns	3	
		Spec		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watch-Dog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-On Reset	2.0–3.6	2.5	10	ms		

Table 10. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

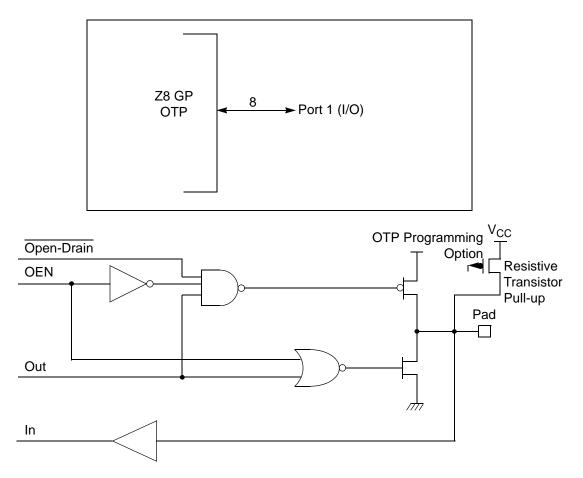


Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description	
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description		
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect		

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description	
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	T8	8,9	Internal
IRQ5	LVD	10,11	Internal

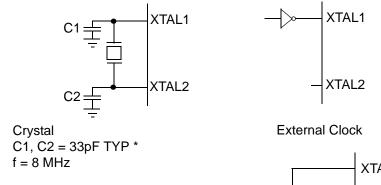
Table 16. Interrupt Types, Sources, and Vectors

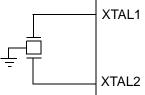
When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Z8 GPTM OTP MCU Family interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 17.

IRQ		Interrupt Edge		
D7	D6	IRQ2 (P31)	IRQ0 (P32)	
0	0	F	F	
0	1	F	R	
1	0	R	F	
1	1	R/F	R/F	
Note: F = Falling Edge; R = Rising Edge				


Table 17. IRQ Register


Clock

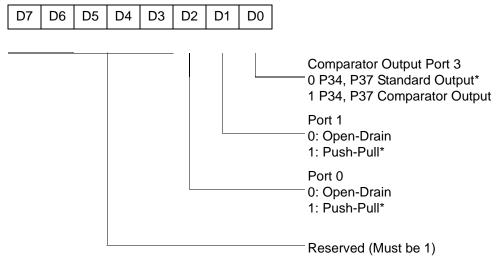
The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

* Preliminary value including pin parasitics

Ceramic Resonator f = 8MHz

Figure 31. Oscillator Configuration



FF	NOP	; clear the pipeline
6F	Stop	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

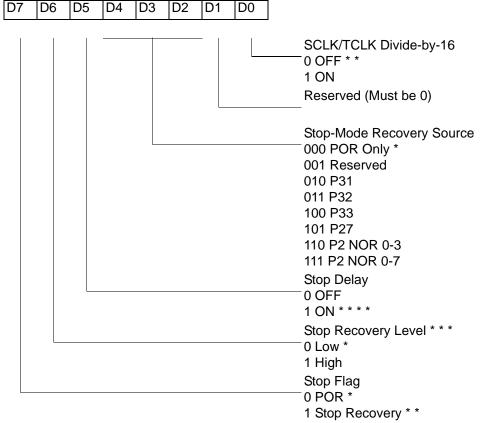
Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.


Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-gate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address <code>0BH</code>.

SMR(0F)0BH

* Default after Power On Reset or Watch-Dog Reset

- * * Set after STOP Mode Recovery
- * * * At the XOR gate input

* * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 33. STOP Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

Table 19. Stop Mode Recovery Source

SMR:432			Operation	
D4	D3	D2	Description of Action	
0	0	0	POR and/or external reset recovery	
0	0	1	Reserved	
0	1	0	P31 transition	
0	1	1	P32 transition	
1	0	0	P33 transition	
1	0	1	P27 transition	
1	1	0	Logical NOR of P20 through P23	
1	1	1	Logical NOR of P20 through P27	

>

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources.

Stop Mode Recovery Delay Select (D5)

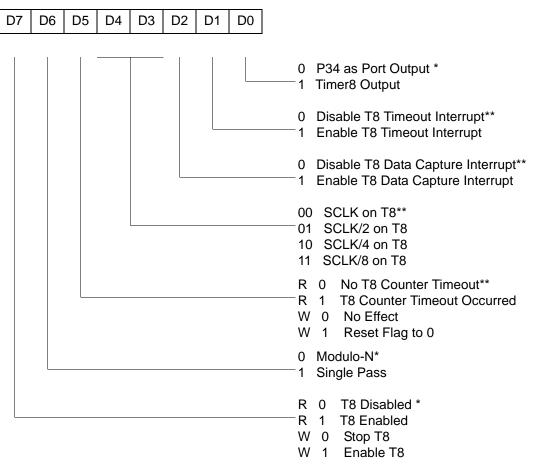
This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

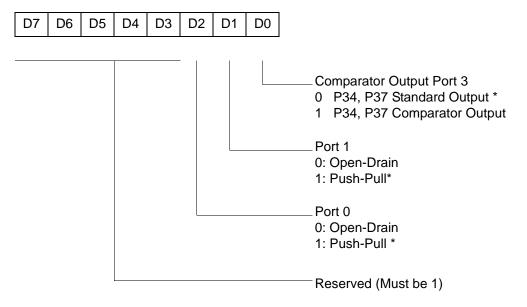
Cold or Warm Start (D7)


This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

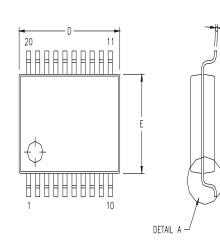
CTR0(0D)00H


* Default setting after reset

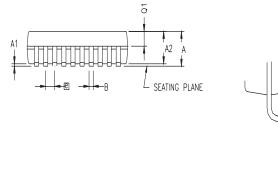
**Default setting after reset. Not reset with Stop Mode recovery.

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

PCON(0F)00H



* Default setting after reset


Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

Z8 GP[™] OTP MCU Family Product Specification

SYMBOL	MILLIMETER			INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e	0.65 BSC			0.0256 BSC		
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Н

0-8

DETAIL A

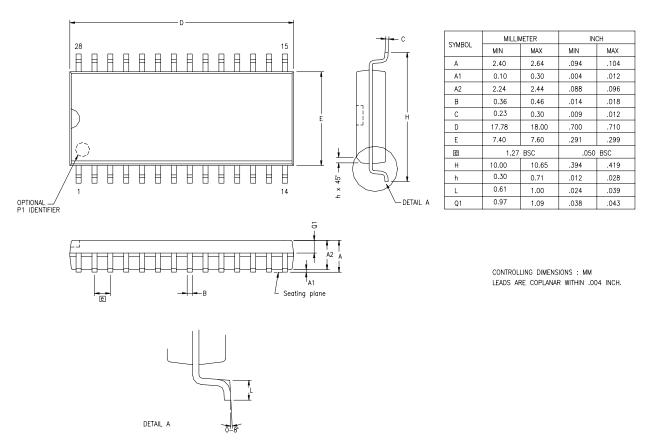


Figure 63. 28-Pin SOIC Package Diagram

Z i L 0 G 92

4KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4804C	48-pin SSOP 4K OTP	ZGP323LSS2804C	28-pin SOIC 4K OTP
ZGP323LSP4004C	40-pin PDIP 4K OTP	ZGP323LSH2004C	20-pin SSOP 4K OTP
ZGP323LSH2804C	28-pin SSOP 4K OTP	ZGP323LSP2004C	20-pin PDIP 4K OTP
ZGP323LSP2804C	28-pin PDIP 4K OTP	ZGP323LSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4804C	48-pin SSOP 4K OTP	ZGP323LES2804C	28-pin SOIC 4K OTP
ZGP323LEP4004C	40-pin PDIP 4K OTP	ZGP323LEH2004C	20-pin SSOP 4K OTP
ZGP323LEH2804C	28-pin SSOP 4K OTP	ZGP323LEP2004C	20-pin PDIP 4K OTP
ZGP323LEP2804C	28-pin PDIP 4K OTP	ZGP323LES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C

	•		
Part Number	Description	Part Number	Description
ZGP323LAH4804C	48-pin SSOP 4K OTP	ZGP323LAS2804C	28-pin SOIC 4K OTP
ZGP323LAP4004C	40-pin PDIP 4K OTP	ZGP323LAH2004C	20-pin SSOP 4K OTP
ZGP323LAH2804C	28-pin SSOP 4K OTP	ZGP323LAP2004C	20-pin PDIP 4K OTP
ZGP323LAP2804C	28-pin PDIP 4K OTP	ZGP323LAS2004C	20-pin SOIC 4K OTP

Note: Replace C with G for Lead-Free Packaging

Additional Components

Part Number	Description	Part Number	Description
ZGP323ICE01ZEM	Emulator/programmer	ZGP32300100ZPR	Programming System

Z8 GP[™] OTP MCU Family Product Specification

D

DC characteristics 11 demodulation mode count capture flowchart 42 flowchart 43 T16 45 T8 41 description functional 23 general 2 pin 4

Ε

EPROM selectable options 62 expanded register file 24 expanded register file architecture 26 expanded register file control registers 69 flag 78 interrupt mask register 77 interrupt priority register 76 interrupt request register 77 port 0 and 1 mode register 75 port 2 configuration register 73 port 3 mode register 74 port configuration register 73 register pointer 78 stack pointer high register 79 stack pointer low register 79 stop-mode recovery register 71 stop-mode recovery register 2 72 T16 control register 67 T8 and T16 common control functions register 65 T8/T16 control register 68 TC8 control register 64 watch-dog timer register 73

F

features standby modes 1 functional description counter/timer functional blocks 38 CTR(D)01h register 33 CTR0(D)00h register 31 CTR2(D)02h register 35 CTR3(D)03h register 37 expanded register file 24 expanded register file architecture 26 HI16(D)09h register 30 HI8(D)0Bh register 30 L08(D)0Ah register 30 L0I6(D)08h register 30 program memory map 24 **RAM 23** register description 63 register file 28 register pointer 27 register pointer detail 29 SMR2(F)0D1h register 38 stack 29 TC16H(D)07h register 30 TC16L(D)06h register 31 TC8H(D)05h register 31 TC8L(D)04h register 31

G

glitch filter circuitry 38

Η

halt instruction, counter/timer 52

I

input circuit 38 interrupt block diagram, counter/timer 49 interrupt types, sources and vectors 50

L

low-voltage detection register 63

Z8 GP[™] OTP MCU Family Product Specification

Μ

memory, program 23 modulo-N mode T16_OUT 45 T8_OUT 41

0

oscillator configuration 51 output circuit, counter/timer 47

Ρ

package information 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOIC package diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 16 port 0 (P17 - P10) 17 port 0 configuration 17 port 1 configuration 18 port 2 (P27 - P20) 18 port 2 (P37 - P30) 19 port 2 configuration 19 port 3 configuration 20 port 3 counter/timer configuration 22 reset) 23 XTAL1 (time-based input 16 XTAL2 (time-based output) 16 ping-pong mode 46 port 0 configuration 17 port 0 pin function 16

port 1 configuration 18 port 1 pin function 17 port 2 configuration 19 port 2 pin function 18 port 3 configuration 20 port 3 pin function 19 port 3counter/timer configuration 22 port configuration register 53 power connections 3 power supply 5 precharacterization product 95 program memory 23 map 24

R

ratings, absolute maximum 10 register 59 CTR(D)01h 33 CTR0(D)00h 31 CTR2(D)02h 35 CTR3(D)03h 37 flag 78 HI16(D)09h 30 HI8(D)0Bh 30 interrupt priority 76 interrupt request 77 interruptmask 77 L016(D)08h 30 L08(D)0Ah 30 LVD(D)0Ch 63 pointer 78 port 0 and 1 75 port 2 configuration 73 port 3 mode 74 port configuration 53, 73 SMR2(F)0Dh 38 stack pointer high 79 stack pointer low 79 stop mode recovery 55 stop mode recovery 2 59 stop-mode recovery 71 stop-mode recovery 2 72 T16 control 67