

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lsp4032c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Port 1: 0–3 pull-up transistors
- Port 1: 4–7 pull-up transistors
- Port 2: 0–7 pull-up transistors
- EPROM Protection
- WDT enabled at POR
- **Note:** The mask option pull-up transistor has a *typical* equivalent resistance of 200 K Ω ±50% at V_{CC}=3 V and 450 K Ω ±50% at V_{CC}=2 V.

General Description

The Z8 GPTM OTP MCU Family is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Z8 GPTM OTP MCU Family architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP MCU offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 2.

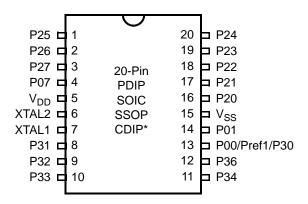


Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 3. 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin #	Symbol	Function	Direction
1–3	P25-P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V_{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34. P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

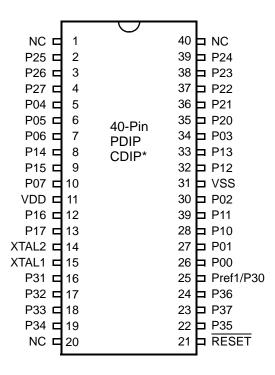


Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

Absolute Maximum Ratings

Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 6. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	0	+70	С	
Storage temperature	-65	+150	С	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
Voltage on V _{DD} pin with respect to V _{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	- 5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V _{DD} or out of V _{SS}		75	mA	

Notes:

This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

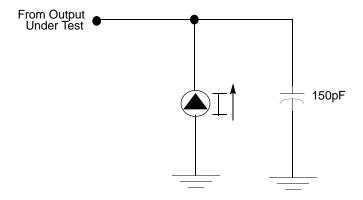


Figure 7. Test Load Diagram

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum		
Input capacitance	12pF		
Output capacitance	12pF		
I/O capacitance	12pF		
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, $f = 1.0$ MHz, unmeasured pins returned to GN			

DC Characteristics

Table 8. DC Characteristics

$T_A = 0$ °C to +70°C								
Symbol	Parameter	v_{cc}	Min	Тур	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	$I_{OH} = -0.5$ mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	$I_{OH} = -7 \text{mA}$	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 1.0$ mA $I_{OL} = 4.0$ mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-3.6	–1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
l _{OL}	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
Icc	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 2 1, 2

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to be input following an SMR.

Z8 GP OTP 4 — Port 0 (I/O)

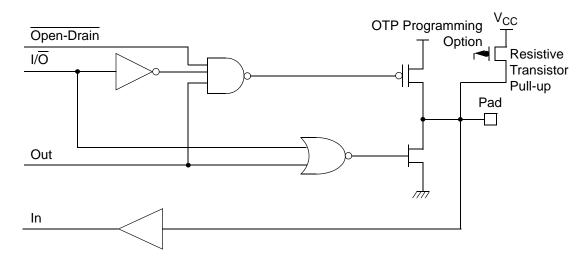


Figure 9. Port 0 Configuration

Port 1 (P17-P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to be input following an SMR.

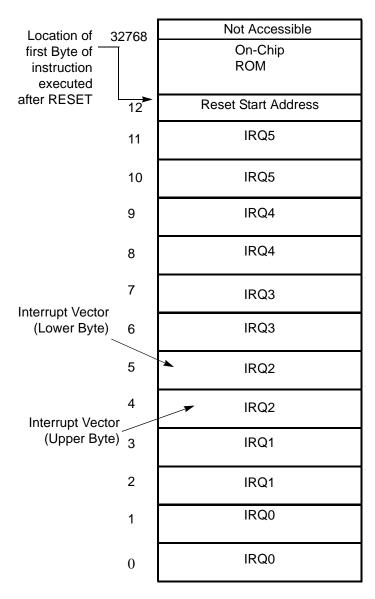


Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\mathrm{H}}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{1\mathrm{H}}$ to $_{\mathrm{FH}}$ exchanges the lower 16 registers to an expanded register bank.

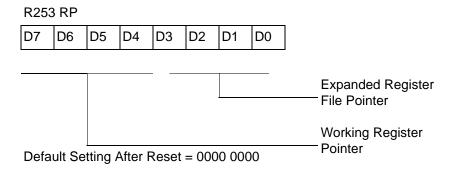


Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)

R253 RP = 00h

R0 = Port 0

R1 = Port 1

R2 = Port 2

R3 = Port 3

But if:

R253 RP = 0Dh

R0 = CTRL0

R1 = CTRL1

R2 = CTRL2

R3 = Reserved

Field	Bit Position		Description	
T16_Data_LO	[7:0]	R/W	Data	

Counter/Timer8 High Hold Register—TC8H(D)05H

Field Bit Position		Description	
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field Bit Position			Description
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 12 lists and briefly describes the fields for this register.

Table 12. CTR0(D)00H Counter/Timer8 Control Register

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0	Modulo-N
			1	Single Pass
Time_Out	5	R/W	0	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0	SCLK
			0 1	SCLK/2
			1 0	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0	Disable Data Capture Interrupt
			1	Enable Data Capture Interrupt

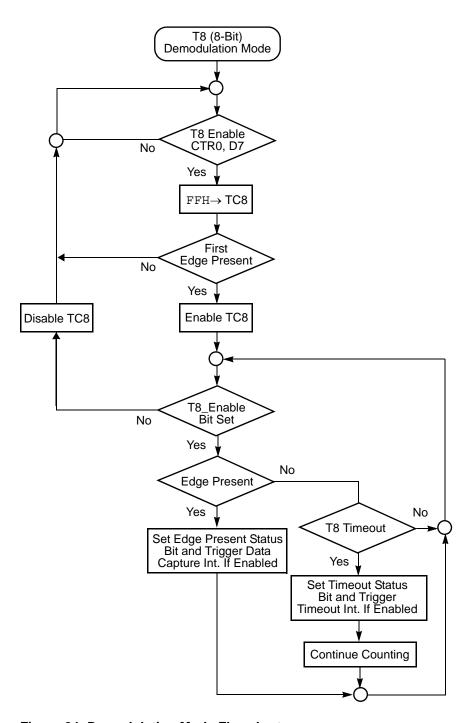
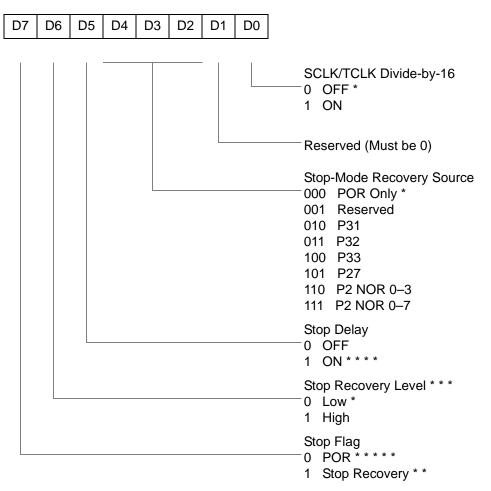


Figure 24. Demodulation Mode Flowchart


Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

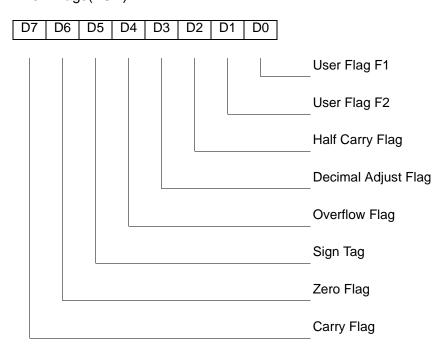
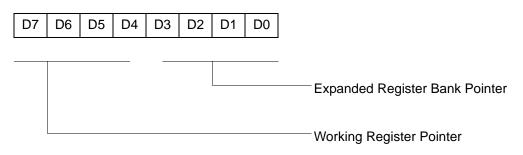
This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 57) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

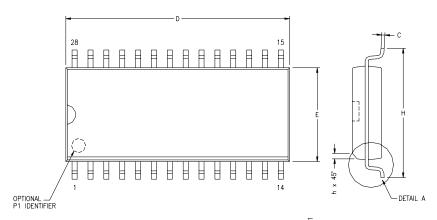
SMR(0F)0BH

- * Default setting after Reset
- * * Set after STOP Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after Reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not Reset with a Stop Mode recovery.

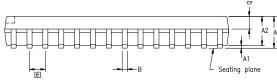
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

R252 Flags(FCH)


Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)



Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

CVMDOI	MILLI	METER	INCH		
SYMBOL	MIN	MAX	MIN	MAX	
A	2.40	2.64	.094	.104	
A1	0.10	0.30	.004	.012	
A2	2.24	2.44	.088	.096	
В	0.36	0.46	.014	.018	
С	0.23	0.30	.009	.012	
D	17.78	18.00	.700	.710	
E	7.40	7.60	.291	.299	
е	1.27	BSC	.050	BSC	
Н	10.00	10.65	.394	.419	
h	0.30	0.71	.012	.028	
L	0.61	1.00	.024	.039	
Q1	0.97	1.09	.038	.043	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

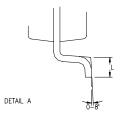
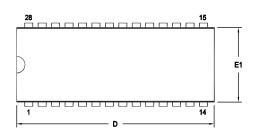
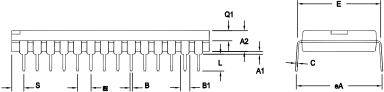




Figure 63. 28-Pin SOIC Package Diagram

 		U U L L H	A1	
		_		

OPTION TABLE
OPTION # PACKAGE
01 STANDARD
02 IDF

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

SYMBOL	OPT#	MILLIN	IETER .	INC	ж
JIMBOL OFI#		MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
ы	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
Е		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
	02	12.83	13.08	.505	.515
е		2.54 TYP		.100	BSC
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
01	01	1.40	1.91	.055	.075
ų,	02	1.40	1.78	.055	.070
_	01	1.52	2.29	.060	.090
S	02	1.02	1.52	.040	.060

CONTROLLING DIMENSIONS : INCH

8KB Standard Temperature: 0° to +70°C				
Part Number	Description	Part Number	Description	
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP	
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP	
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP	
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP	

8KB Extended Temperature: -40° to +105°C				
Part Number	Description	Part Number	Description	
ZGP323LEH4808C	48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP	
ZGP323LEP4008C	40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP	
ZGP323LEH2808C	28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP	
ZGP323LEP2808C	28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP	

8KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP	
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP	
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP	
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP	

Note: Replace C with G for Lead-Free Packaging

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZG = ZiLOG General Purpose Family

P = OTP

323 = Family Designation

L = Voltage Range

2V to 3.6V

T = Temperature Range:

S = 0 to 70 degrees C (Standard)

E = -40 to +105 degrees C (Extended)

A = -40 to +125 degrees C (Automotive)

P = Package Type:

K = Windowed Cerdip

P = PDIP

H = SSOP

S = SOIC

= Number of Pins

CC = Memory Size

M = Packaging Options

C = Non Lead-Free

G = Lead-Free

E = CDIP

Index

Numerics	Counter/timer
16-bit counter/timer circuits 44	16-bit circuits 44
20-pin DIP package diagram 81	8-bit circuits 40
20-pin SSOP package diagram 82	brown-out voltage/standby 62
28-pin DIP package diagram 85	clock 51
28-pin SOICpackage diagram 84	demodulation mode count capture flow-
28-pin SSOP package diagram 86	chart 42
40-pin DIP package diagram 87	demodulation mode flowchart 43
48-pin SSOP package diagram 88	EPROM selectable options 62
8-bit counter/timer circuits 40	glitch filter circuitry 38
	halt instruction 52
	input circuit 38
A	interrupt block diagram 49
absolute maximum ratings 10	interrupt types, sources and vectors 50
AC	oscillator configuration 51
characteristics 14	output circuit 47
timing diagram 14	ping-pong mode 46
address spaces, basic 2	port configuration register 53
architecture 2	resets and WDT 61
expanded register file 26	SCLK circuit 56
	stop instruction 52
	stop mode recovery register 55
В	stop mode recovery register 2 59
basic address spaces 2	stop mode recovery source 57
block diagram, ZLP32300 functional 3	T16 demodulation mode 45
block diagram, ZEI 32300 farictional 3	T16 transmit mode 44
	T16_OUT in modulo-N mode 45
C	T16_OUT in single-pass mode 45
capacitance 11	T8 demodulation mode 41
characteristics	T8 transmit mode 38
AC 14	T8_OUT in modulo-N mode 41
DC 11	T8_OUT in single-pass mode 41
clock 51	transmit mode flowchart 39
comparator inputs/outputs 23	voltage detection and flags 63
configuration	watch-dog timer mode register 60
port 0 17	watch-dog timer time select 61
port 1 18	CTR(D)01h T8 and T16 Common Functions 33
port 2 19	
port 3 20	
port 3 counter/timer 22	
port o counter/timer ZZ	