E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lss2004c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.	Functional Block Diagram	. 3
Figure 2.	Counter/Timers Diagram	. 4
Figure 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration	. 5
Figure 4.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration	. 6
Figure 5.	40-Pin PDIP/CDIP* Pin Configuration	. 7
Figure 6.	48-Pin SSOP Pin Configuration	. 8
Figure 7.	Test Load Diagram	10
Figure 8.	AC Timing Diagram	14
Figure 9.	Port 0 Configuration	17
Figure 10.	Port 1 Configuration	18
Figure 11.	Port 2 Configuration	19
Figure 12.	Port 3 Configuration	20
Figure 13.	Port 3 Counter/Timer Output Configuration	22
Figure 14.	Program Memory Map (32K OTP)	24
Figure 15.	Expanded Register File Architecture	26
Figure 16.	Register Pointer	27
Figure 17.	Register Pointer—Detail	29
Figure 18.	Glitch Filter Circuitry	38
Figure 19.	Transmit Mode Flowchart	39
Figure 20.	8-Bit Counter/Timer Circuits	40
Figure 21.	T8_OUT in Single-Pass Mode	41
Figure 22.	T8_OUT in Modulo-N Mode	41
Figure 23.	Demodulation Mode Count Capture Flowchart	42
Figure 24.	Demodulation Mode Flowchart	43
Figure 25.	16-Bit Counter/Timer Circuits	44
Figure 26.	T16_OUT in Single-Pass Mode	45
Figure 27.	T16_OUT in Modulo-N Mode	45
Figure 28.	Ping-Pong Mode Diagram	47
Figure 29.	Output Circuit	47
Figure 30.	Interrupt Block Diagram	49
Figure 31.	Oscillator Configuration	51
Figure 32.	Port Configuration Register (PCON) (Write Only)	53
Figure 33.	STOP Mode Recovery Register	55
Figure 34.	SCLK Circuit	56

Z8 GPTM OTP MCU Family Product Specification

Table 2. Power Connections

Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 5.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

Z8 GPTM **OTP MCU Family** Product Specification

11 Zilog

Capacitance

Table 7 lists the capacitances.

Table 7. Capacitance

Parameter	Maximum			
Input capacitance	12pF			
Output capacitance	12pF			
I/O capacitance	12pF			
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND				

DC Characteristics

Table 6. DC Characteristics	Table 8.	DC Characteristics
-----------------------------	----------	---------------------------

	T _A = 0°C to +70°C							
Symbol	Parameter	V _{CC}	Min	Тур	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	$I_{OL} = 1.0 \text{mA}$ $I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{DD} -1.75	V		
IIL	Input Leakage	2.0-3.6	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
IOL	Output Leakage	2.0-3.6	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
ICC	Supply Current	2.0 3.6			10 15	mA mA	at 8.0 MHz at 8.0 MHz	1, 2 1, 2

Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

CTR1(0D)01H" on page 33). Other edge detect and IRQ modes are described in Table 11.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 11. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

Figure 13. Port 3 Counter/Timer Output Configuration

27

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{0\rm H}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 26)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTRL0 R1 = CTRL1 R2 = CTRL2R3 = Reserved

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 13 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 13. CTR1(0D)01H T8 and T16 Common Functions

35

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 14 lists and briefly describes the fields for this register.

Figure 19. Transmit Mode Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Z8 GP[™] OTP MCU Family Product Specification

Caution: Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFFH. Transition from 0 to FFFFH is not a timeout condition.

Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

Watch-Dog Timer Mode Register (WDTMR)

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the Z8[®] CPU if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 37.

WDTMR(0F)0Fh

* Default setting after reset

Figure 37. Watch-Dog Timer Mode Register (Write Only)

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 20.

61

Table 20. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High input translation.

Figure 38. Resets and WDT

WDTMR(0F)0FH

* Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)

* Default setting after reset

Figure 48. Port 2 Mode Register (F6H: Write Only)

Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

Figure 60. 20-Pin SOIC Package Diagram

CYNDOL	MILLI	METER	IN	сн
STMBOL	MIN	MAX	MIN	MAX
A	2.40	2.65	.094	.104
A1	0.10	0.30	.004	.012
A2	2.24	2.44	.088	.096
в	0.36	0.46	.014	.018
С	0.23	0.30	.009	.012
D	12.60	12.95	.496	.510
E	7.40	7.60	.291	.299
e	1.27	BSC	.050	BSC
н	10.00	10.65	.394	.419
h	0.30	0.40	.012	.016
L	0.60	1.00	.024	.039
Q1	0.97	1.07	.038	.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 62. 28-Pin CDIP Package

Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

>

Z i L 0 G 91

8KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323LSH4808C	48-pin SSOP 8K OTP	ZGP323LSS2808C	28-pin SOIC 8K OTP
ZGP323LSP4008C	40-pin PDIP 8K OTP	ZGP323LSH2008C	20-pin SSOP 8K OTP
ZGP323LSH2808C	28-pin SSOP 8K OTP	ZGP323LSP2008C	20-pin PDIP 8K OTP
ZGP323LSP2808C	28-pin PDIP 8K OTP	ZGP323LSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323LEH4808C	48-pin SSOP 8K OTP	ZGP323LES2808C	28-pin SOIC 8K OTP
ZGP323LEP4008C	40-pin PDIP 8K OTP	ZGP323LEH2008C	20-pin SSOP 8K OTP
ZGP323LEH2808C	28-pin SSOP 8K OTP	ZGP323LEP2008C	20-pin PDIP 8K OTP
ZGP323LEP2808C	28-pin PDIP 8K OTP	ZGP323LES2008C	20-pin SOIC 8K OTP

8KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description
ZGP323LAH4808C	48-pin SSOP 8K OTP	ZGP323LAS2808C	28-pin SOIC 8K OTP
ZGP323LAP4008C	40-pin PDIP 8K OTP	ZGP323LAH2008C	20-pin SSOP 8K OTP
ZGP323LAH2808C	28-pin SSOP 8K OTP	ZGP323LAP2008C	20-pin PDIP 8K OTP
ZGP323LAP2808C	28-pin PDIP 8K OTP	ZGP323LAS2008C	20-pin SOIC 8K OTP

Note: Replace C with G for Lead-Free Packaging