E·XFL

Welcome to E-XFL.COM

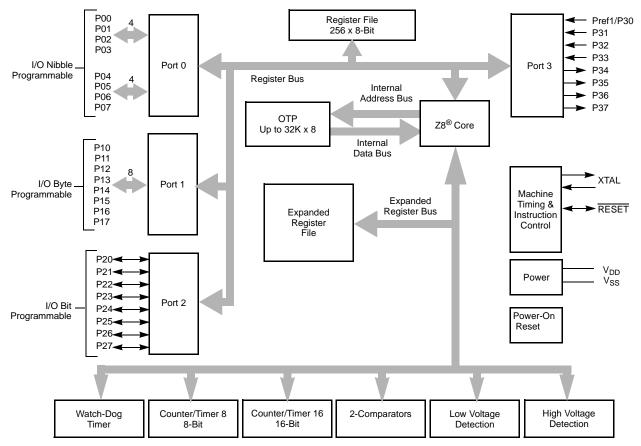
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323lss2008c


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Power Connections

Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

		\bigcirc	
NC			40 🗖 NC
P25			39 🗖 P24
P26			38 🗖 P23
P27	□ 4		37 🗖 P22
P04	□ 5		36 🗖 P21
P05	□ 6	40-Pin	35 🗖 P20
P06	– 7	PDIP	34 🗖 P03
P14	⊏ 8	CDIP*	33 🗖 P13
P15	□ 9	ODII	32 🗖 P12
P07	1 0		31 🗖 VSS
VDD	– 11		30 🗖 P02
P16	12		39 🗖 P11
P17	□ 13		28 🗖 P10
XTAL2	□ 14		27 🗖 P01
XTAL1	1 5		26 🗖 P00
P31	1 6		25 🗖 Pref1/P30
P32	1 7		24 🗖 P36
P33	□ 18		23 🗖 P37
P34	□ 19		22 🗖 P35
NC	20		21 🗖 RESET
	1		

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

40-Pin PDIP/CDIP* #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC

Table 5. 40- and 48-Pin Configuration (Continued)

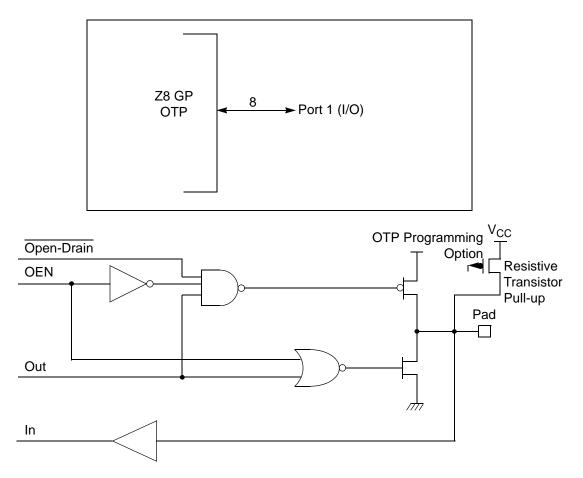


Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

Z8 [®] Standard (Control Registers	Reset Condition
	Expanded Reg. Bank 0/Group 15*	* D7 D6 D5 D4 D3 D2 D1 D0
	FF SPL	
	FE SPH	U U U U U U U U
Register Pointer	FD RP	0 0 0 0 0 0 0
7 6 5 4 3 2 1 0	FC FLAGS	U U U U U U U U
	FB IMR	U U U U U U U U
Working Register Expanded Regist	er FA IRQ	0 0 0 0 0 0 0 0
Group Pointer Bank Pointer	F9 IPR	U U U U U U U U
	F8 P01M	1 1 0 0 1 1 1 1
	* F7 P3M	0 0 0 0 0 0 0
	* F6 P2M	1 1 1 1 1 1 1 1
	F5 Reserved	U U U U U U U U
	F4 Reserved	U U U U U U U U
	F3 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
Register File (Bank 0)** /	F2 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
FF F0	F1 Reserved	$\cup \cup \cup \cup \cup \cup \cup \cup \cup$
FU	F0 Reserved	U U U U U U U U
	Expanded Reg. Bank F/Group 0**	
	(F) OF WDTMR	UU001101
	(F) 0E Reserved	
	* (F) 0D SMR2	0 0 0 0 0 0 0 0
	(F) 0C Reserved	
7F	↑ (F) 0B SMR	U 0 1 0 0 0 U 0
/F	(F) 0A Reserved	
	(F) 09 Reserved	
	(F) 08 Reserved	
	(F) 07 Reserved	
	(F) 06 Reserved	
	(F) 05 Reserved	
	(F) 04 Reserved	
	(F) 03 Reserved	
	(F) 02 Reserved	
	(F) 01 Reserved	
Expanded Reg. Bank 0/Group (0)	(F) 00 PCON	1 1 1 1 1 1 1 0
(0) 03 P3 0 U	Expanded Reg. Bank D/Group 0	
	(D) 0C LVD	$\cup \cup \cup \cup \cup \cup \cup 0$
(0) 02 P2 U	* (D) 0B HI8	000000000
* (0) 01 P1 U	* (D) 0A LO8	000000000
(0) 00 D0	* (D) 09 HI16	0 0 0 0 0 0 0 0
(0) 00 P0 U	* (D) 08 LO16	0 0 0 0 0 0 0 0
U = Unknown	* (D) 07 TC16H	0 0 0 0 0 0 0 0
* Is not reset with a Stop-Mode Recovery	* (D) 06 TC16L	0 0 0 0 0 0 0
** All addresses are in hexadecimal	* (D) 05 TC8H	0 0 0 0 0 0 0
↑ Is not reset with a Stop-Mode Recovery, except Bit 0	* (D) 04 TC8L	0 0 0 0 0 0 0
↑↑ Bit 5 Is not reset with a Stop-Mode Recovery	1↑ (D) 03 CTR3	0 0 0 1 1 1 1 1
$\uparrow\uparrow\uparrow$ Bits 5,4,3,2 not reset with a Stop-Mode Recovery	↑↑↑ (D) 02 CTR2	0 0 0 0 0 0 0
↑↑↑↑ Bits 5 and 4 not reset with a Stop-Mode Recovery	↑↑↑↑ (D) 01 CTR1	0 0 0 0 0 0 0 0
↑↑↑↑↑ Bits 5,4,3,2,1 not reset with a Stop-Mode Recovery	↑↑↑↑↑ (D) 00 CTR0	00000000
	B	·

Figure 15. Expanded Register File Architecture

35

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 14 lists and briefly describes the fields for this register.

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

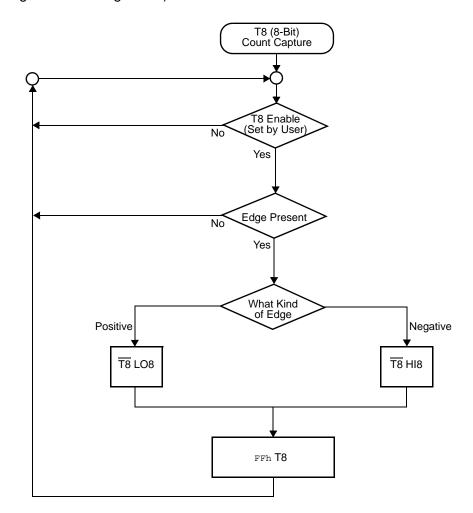


Figure 23. Demodulation Mode Count Capture Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

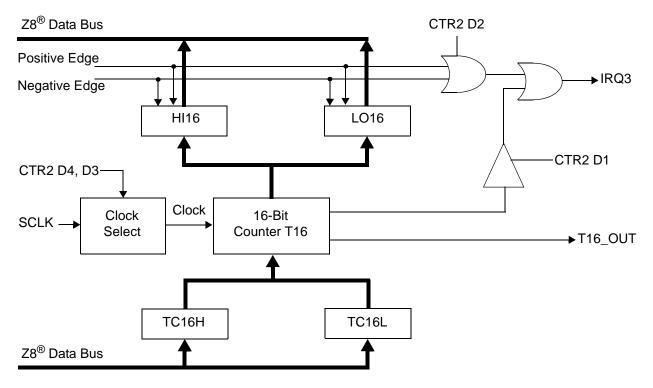


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 48.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The Z8 GPTM OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/ timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57.

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

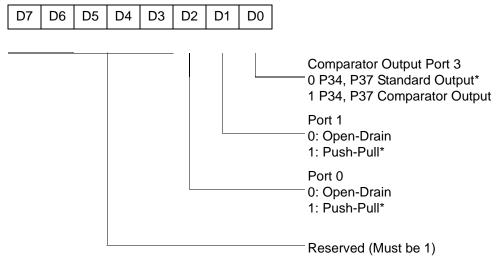
The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:



FF	NOP	; clear the pipeline
6F	Stop	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 21.

Table 21. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

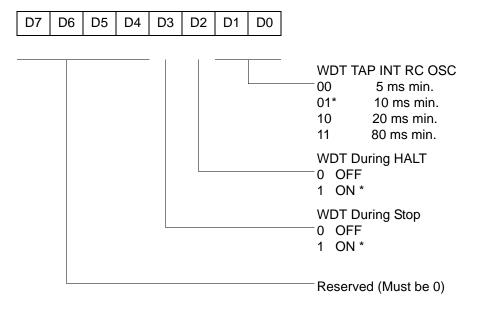
Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register 0CH at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

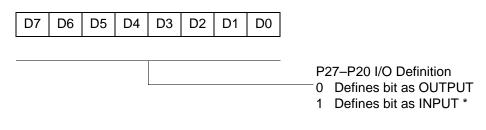
Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.



Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

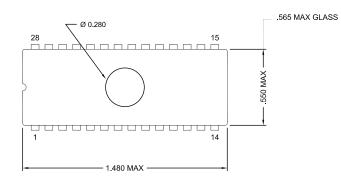
WDTMR(0F)0FH

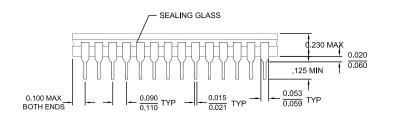


* Default setting after reset

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers


R246 P2M(F6H)



* Default setting after reset

Figure 48. Port 2 Mode Register (F6H: Write Only)

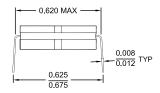
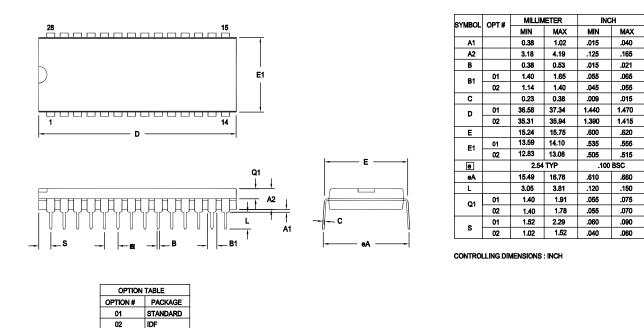



Figure 62. 28-Pin CDIP Package

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues.

ZiLOG, Inc.

532 Race Street San Jose, CA 95126-3432 Telephone: (408) 558-8500 FAX: 408 558-8300 Internet: <u>http://www.ZiLOG.com</u>

D

DC characteristics 11 demodulation mode count capture flowchart 42 flowchart 43 T16 45 T8 41 description functional 23 general 2 pin 4

Ε

EPROM selectable options 62 expanded register file 24 expanded register file architecture 26 expanded register file control registers 69 flag 78 interrupt mask register 77 interrupt priority register 76 interrupt request register 77 port 0 and 1 mode register 75 port 2 configuration register 73 port 3 mode register 74 port configuration register 73 register pointer 78 stack pointer high register 79 stack pointer low register 79 stop-mode recovery register 71 stop-mode recovery register 2 72 T16 control register 67 T8 and T16 common control functions register 65 T8/T16 control register 68 TC8 control register 64 watch-dog timer register 73

F

features standby modes 1 functional description counter/timer functional blocks 38 CTR(D)01h register 33 CTR0(D)00h register 31 CTR2(D)02h register 35 CTR3(D)03h register 37 expanded register file 24 expanded register file architecture 26 HI16(D)09h register 30 HI8(D)0Bh register 30 L08(D)0Ah register 30 L0I6(D)08h register 30 program memory map 24 **RAM 23** register description 63 register file 28 register pointer 27 register pointer detail 29 SMR2(F)0D1h register 38 stack 29 TC16H(D)07h register 30 TC16L(D)06h register 31 TC8H(D)05h register 31 TC8L(D)04h register 31

G

glitch filter circuitry 38

Η

halt instruction, counter/timer 52

I

input circuit 38 interrupt block diagram, counter/timer 49 interrupt types, sources and vectors 50

L

low-voltage detection register 63

Μ

memory, program 23 modulo-N mode T16_OUT 45 T8_OUT 41

0

oscillator configuration 51 output circuit, counter/timer 47

Ρ

package information 20-pin DIP package diagram 81 20-pin SSOP package diagram 82 28-pin DIP package diagram 85 28-pin SOIC package diagram 84 28-pin SSOP package diagram 86 40-pin DIP package diagram 87 48-pin SSOP package diagram 88 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 16 port 0 (P17 - P10) 17 port 0 configuration 17 port 1 configuration 18 port 2 (P27 - P20) 18 port 2 (P37 - P30) 19 port 2 configuration 19 port 3 configuration 20 port 3 counter/timer configuration 22 reset) 23 XTAL1 (time-based input 16 XTAL2 (time-based output) 16 ping-pong mode 46 port 0 configuration 17 port 0 pin function 16

port 1 configuration 18 port 1 pin function 17 port 2 configuration 19 port 2 pin function 18 port 3 configuration 20 port 3 pin function 19 port 3counter/timer configuration 22 port configuration register 53 power connections 3 power supply 5 precharacterization product 95 program memory 23 map 24

R

ratings, absolute maximum 10 register 59 CTR(D)01h 33 CTR0(D)00h 31 CTR2(D)02h 35 CTR3(D)03h 37 flag 78 HI16(D)09h 30 HI8(D)0Bh 30 interrupt priority 76 interrupt request 77 interruptmask 77 L016(D)08h 30 L08(D)0Ah 30 LVD(D)0Ch 63 pointer 78 port 0 and 1 75 port 2 configuration 73 port 3 mode 74 port configuration 53, 73 SMR2(F)0Dh 38 stack pointer high 79 stack pointer low 79 stop mode recovery 55 stop mode recovery 2 59 stop-mode recovery 71 stop-mode recovery 2 72 T16 control 67