Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|-----------------------------------------------------------| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 16 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 20-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323lss2008g | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Table of Contents** | Development Features | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions | | DC Characteristics | | AC Characteristics | | Pin Functions 16 XTAL1 Crystal 1 (Time-Based Input) 16 XTAL2 Crystal 2 (Time-Based Output) 16 Port 0 (P07–P00) 16 Port 1 (P17–P10) 17 Port 2 (P27–P20) 18 Port 3 (P37–P30) 19 RESET (Input, Active Low) 23 | | Functional Description 23 Program Memory 23 RAM 23 Expanded Register File 24 Register File 28 Stack 29 Timers 30 Counter/Timer Functional Blocks 38 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) 69 | | Standard Control Registers | | Package Information | | Ordering Information | | Precharacterization Product 95 | ## **Absolute Maximum Ratings** Stresses greater than those listed in Table 7 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability. **Table 6. Absolute Maximum Ratings** | Parameter | Minimum | Maximum | Units | Notes | |----------------------------------------------------------------|------------|---------|-------|-------| | Ambient temperature under bias | 0 | +70 | С | | | Storage temperature | -65 | +150 | С | | | Voltage on any pin with respect to V <sub>SS</sub> | -0.3 | +5.5 | V | 1 | | Voltage on V <sub>DD</sub> pin with respect to V <sub>SS</sub> | -0.3 | +3.6 | V | | | Maximum current on input and/or inactive output pin | <b>-</b> 5 | +5 | μA | | | Maximum output current from active output pin | -25 | +25 | mA | | | Maximum current into V <sub>DD</sub> or out of V <sub>SS</sub> | | 75 | mA | | Notes: This voltage applies to all pins except the following: V<sub>DD</sub>, P32, P33 and RESET. #### **Standard Test Conditions** The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7). Figure 7. Test Load Diagram Figure 10. Port 1 Configuration ### Port 2 (P27-P20) Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs. Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode. Figure 14. Program Memory Map (32K OTP) ## **Expanded Register File** The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8<sup>®</sup> register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the Table 13. CTR1(0D)01H T8 and T16 Common Functions (Continued) | Field | Bit Position | | Value | Description | |-------------------|--------------|-----|-------|------------------------| | Transmit_Submode/ | 32 | R/W | | Transmit Mode | | Glitch_Filter | | | 00* | Normal Operation | | | | | 01 | Ping-Pong Mode | | | | | 10 | T16_Out = 0 | | | | | 11 | T16_Out = 1 | | | | | | Demodulation Mode | | | | | 00* | No Filter | | | | | 01 | 4 SCLK Cycle | | | | | 10 | 8 SCLK Cycle | | | | | 11 | Reserved | | Initial_T8_Out/ | 1- | | | Transmit Mode | | Rising Edge | | R/W | 0* | T8_OUT is 0 Initially | | | | | 1 | T8_OUT is 1 Initially | | | | | | Demodulation Mode | | | | R | 0* | No Rising Edge | | | | | 1 | Rising Edge Detected | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | Initial_T16_Out/ | 0 | | | Transmit Mode | | Falling_Edge | | R/W | 0* | T16_OUT is 0 Initially | | | | | 1 | T16_OUT is 1 Initially | | | | | | Demodulation Mode | | | | R | 0* | No Falling Edge | | | | | 1 | Falling Edge Detected | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | #### Note: #### Mode If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode. #### P36\_Out/Demodulator\_Input In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16. In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31. If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input. <sup>\*</sup>Default at Power-On Reset. <sup>\*\*</sup>Default at Power-On Reset.Not reset with Stop Mode recovery. Table 14. CTR2(D)02H: Counter/Timer16 Control Register | Field | Bit Position | | Value | Description | |------------------|--------------|-----|-------|---------------------------| | T16_Enable | 7 | R | 0* | Counter Disabled | | | | | 1 | Counter Enabled | | | | W | 0 | Stop Counter | | | | | 1 | Enable Counter | | Single/Modulo-N | -6 | R/W | | Transmit Mode | | | | | 0* | Modulo-N | | | | | 1 | Single Pass | | | | | | Demodulation Mode | | | | | 0 | T16 Recognizes Edge | | | | | 1 | T16 Does Not Recognize | | | | | | Edge | | Time_Out | 5 | R | 0* | No Counter Timeout | | | | | 1 | Counter Timeout | | | | | | Occurred | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | T16 _Clock | 43 | R/W | 00** | SCLK | | | | | 01 | SCLK/2 | | | | | 10 | SCLK/4 | | | | | 11 | SCLK/8 | | Capture_INT_Mask | 2 | R/W | 0** | Disable Data Capture Int. | | | | | 1 | Enable Data Capture Int. | | Counter_INT_Mask | 1- | R/W | 0 | Disable Timeout Int. | | | | | 1 | Enable Timeout Int. | | P35_Out | 0 | R/W | 0* | P35 as Port Output | | | | | 1 | T16 Output on P35 | #### Note: #### T16\_Enable This field enables T16 when set to 1. #### Single/Modulo-N In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached. <sup>\*</sup>Indicates the value upon Power-On Reset. <sup>\*\*</sup>Indicates the value upon Power-On Reset.Not reset with Stop Mode recovery. When T8 is enabled, the output T8\_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8\_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8\_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8\_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8\_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8\_OUT level and repeats the cycle. See Figure 20. Figure 20. 8-Bit Counter/Timer Circuits You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded. <u>^</u> Caution: To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH. Z i L O G **Note:** The letter h denotes hexadecimal values. Transition from 0 to FFh is not a timeout condition. $\wedge$ **Caution:** Using the same instructions for stopping the counter/timers and setting the status bits is not recommended. Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22. Figure 21. T8\_OUT in Single-Pass Mode Figure 22. T8\_OUT in Modulo-N Mode #### **T8 Demodulation Mode** The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put #### **During PING-PONG Mode** The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count. #### **Timer Output** The output logic for the timers is illustrated in Figure 29. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1. #### Interrupts The Z8 GP<sup>TM</sup> OTP MCU Family features six different interrupts (Table 16). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 16) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests. The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 57. z i L o G | 57 Figure 35. Stop Mode Recovery Source **Table 19. Stop Mode Recovery Source** | SMR:432 | | | Operation | |---------|----|----|------------------------------------| | D4 | D3 | D2 | Description of Action | | 0 | 0 | 0 | POR and/or external reset recovery | | 0 | 0 | 1 | Reserved | | 0 | 1 | 0 | P31 transition | | 0 | 1 | 1 | P32 transition | | 1 | 0 | 0 | P33 transition | | 1 | 0 | 1 | P27 transition | | 1 | 1 | 0 | Logical NOR of P20 through P23 | | 1 | 1 | 1 | Logical NOR of P20 through P27 | Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 59 for other recover sources. #### **Stop Mode Recovery Delay Select (D5)** This bit, if Low, disables the $T_{POR}$ delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC. Note: It is recommended that this bit be set to 1 if using a crystal or resonator clock source. The T<sub>POR</sub> delay allows the clock source to stabilize before executing instructions. #### Stop Mode Recovery Edge Select (D6) A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR. #### Cold or Warm Start (D7) This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR). #### Low-Voltage Detection Register—LVD(D)0Ch **Note:** Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current. | Field | Bit Position | | | Description | |----------|--------------|-----|---------|--------------------------------| | LVD | 76543 | | | Reserved<br>No Effect | | | 2 | R | 1<br>0* | HVD flag set<br>HVD flag reset | | | 1- | R | 1<br>0* | LVD flag set<br>LVD flag reset | | | 0 | R/W | 1<br>0* | Enable VD<br>Disable VD | | *Default | after POR | | | | Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag. #### **Voltage Detection and Flags** The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V<sub>CC</sub> voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V<sub>CC</sub> level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V<sub>CC</sub> is higher than V<sub>HVD</sub>. The LVD flag (bit 1 of the LVD register) is set only if V<sub>CC</sub> is lower than the V<sub>LVD</sub>. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only. Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection. ## **Expanded Register File Control Registers (0D)** The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43. <sup>\*</sup> Default setting after reset Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) <sup>\*\*</sup>Default setting after reset. Not reset with Stop Mode recovery. #### CTR3(0D)03H <sup>\*</sup> Default setting after reset. Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted) Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse. <sup>\*\*</sup> Default setting after reset. Not reset with Stop Mode recovery. <sup>\*</sup> Default setting after reset. Not reset with Stop Mode recovery. Figure 49. Port 3 Mode Register (F7H: Write Only) ### R248 P01M(F8H) <sup>\*</sup> Default setting after reset; only P00, P01 and P07 are available in 20-pin configurations. Figure 50. Port 0 and 1 Mode Register (F8H: Write Only) | SYMBOL | MILLI | METER | INCH | | |--------|-------|----------|------|-------| | SYMBOL | MIN | MAX | MIN | MAX | | Α | 2.40 | 2.64 | .094 | .104 | | A1 | 0.10 | 0.30 | .004 | .012 | | A2 | 2.24 | 2.44 | .088 | .096 | | В | 0.36 | 0.46 | .014 | .018 | | С | 0.23 | 0.30 | .009 | .012 | | D | 17.78 | 18.00 | .700 | .710 | | E | 7.40 | 7.60 | .291 | .299 | | е | 1.27 | 1.27 BSC | | D BSC | | Н | 10.00 | 10.65 | .394 | .419 | | h | 0.30 | 0.71 | .012 | .028 | | L | 0.61 | 1.00 | .024 | .039 | | Q1 | 0.97 | 1.09 | .038 | .043 | CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH. Figure 63. 28-Pin SOIC Package Diagram Figure 66. 40-Pin CDIP Package Figure 67. 40-Pin PDIP Package Diagram | SYMBOL | MILLIN | METER | INCH | | |---------|----------|-------|-------|-------| | SIMIDOL | MIN | MAX | MIN | MAX | | A1 | 0.51 | 1.02 | .020 | .040 | | A2 | 3.18 | 3.94 | .125 | .155 | | В | 0.38 | 0.53 | .015 | .021 | | B1 | 1.02 | 1.52 | .040 | .060 | | С | 0.23 | 0.38 | .009 | .015 | | D | 52.07 | 52.58 | 2.050 | 2.070 | | E | 15.24 | 15.75 | .600 | .620 | | E1 | 13.59 | 14.22 | .535 | .560 | | e | 2.54 TYP | | .100 | TYP | | eA | 15.49 | 16.76 | .610 | .660 | | L | 3.05 | 3.81 | .120 | .150 | | Q1 | 1.40 | 1.91 | .055 | .075 | | S | 1.52 | 2.29 | .060 | .090 | CONTROLLING DIMENSIONS : INCH For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired. #### Codes ZG = ZiLOG General Purpose Family P = OTP 323 = Family Designation L = Voltage Range 2V to 3.6V T = Temperature Range: S = 0 to 70 degrees C (Standard) E = -40 to +105 degrees C (Extended) A = -40 to +125 degrees C (Automotive) P = Package Type: K = Windowed Cerdip P = PDIP H = SSOP S = SOIC ## = Number of Pins CC = Memory Size M = Packaging Options C = Non Lead-Free G = Lead-Free E = CDIP # Index | Numerics | counter/timer | |---------------------------------------|------------------------------------------| | 16-bit counter/timer circuits 44 | 16-bit circuits 44 | | 20-pin DIP package diagram 81 | 8-bit circuits 40 | | 20-pin SSOP package diagram 82 | brown-out voltage/standby 62 | | 28-pin DIP package diagram 85 | clock 51 | | 28-pin SOlCpackage diagram 84 | demodulation mode count capture flow- | | 28-pin SSOP package diagram 86 | chart 42 | | 40-pin DIP package diagram 87 | demodulation mode flowchart 43 | | 48-pin SSOP package diagram 88 | EPROM selectable options 62 | | 8-bit counter/timer circuits 40 | glitch filter circuitry 38 | | | halt instruction 52 | | | input circuit 38 | | A | interrupt block diagram 49 | | absolute maximum ratings 10 | interrupt types, sources and vectors 50 | | AC | oscillator configuration 51 | | characteristics 14 | output circuit 47 | | timing diagram 14 | ping-pong mode 46 | | address spaces, basic 2 | port configuration register 53 | | architecture 2 | resets and WDT 61 | | expanded register file 26 | SCLK circuit 56 | | 5. ps. 14.54 1.5 g. 51.51 2.5 | stop instruction 52 | | | stop mode recovery register 55 | | В | stop mode recovery register 2 59 | | basic address spaces 2 | stop mode recovery source 57 | | block diagram, ZLP32300 functional 3 | T16 demodulation mode 45 | | block diagram, ZEI 32300 functional 3 | T16 transmit mode 44 | | | T16_OUT in modulo-N mode 45 | | C | T16_OUT in single-pass mode 45 | | | T8 demodulation mode 41 | | capacitance 11 | T8 transmit mode 38 | | characteristics<br>AC 14 | T8_OUT in modulo-N mode 41 | | DC 11 | T8_OUT in single-pass mode 41 | | clock 51 | transmit mode flowchart 39 | | | voltage detection and flags 63 | | comparator inputs/outputs 23 | watch-dog timer mode register 60 | | configuration | watch-dog timer time select 61 | | port 0 17 | CTR(D)01h T8 and T16 Common Functions 33 | | port 1 18 | | | port 2 19 | | | port 3 20 | | | port 3 counter/timer 22 | |