

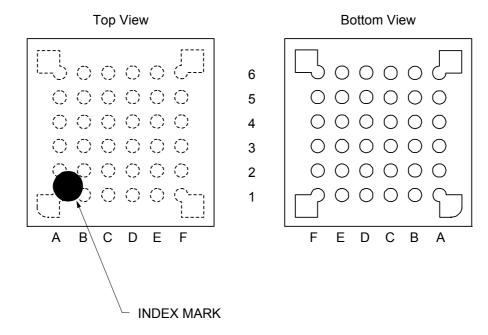
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, IrDA, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 13x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11bbeafp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 36-pin products

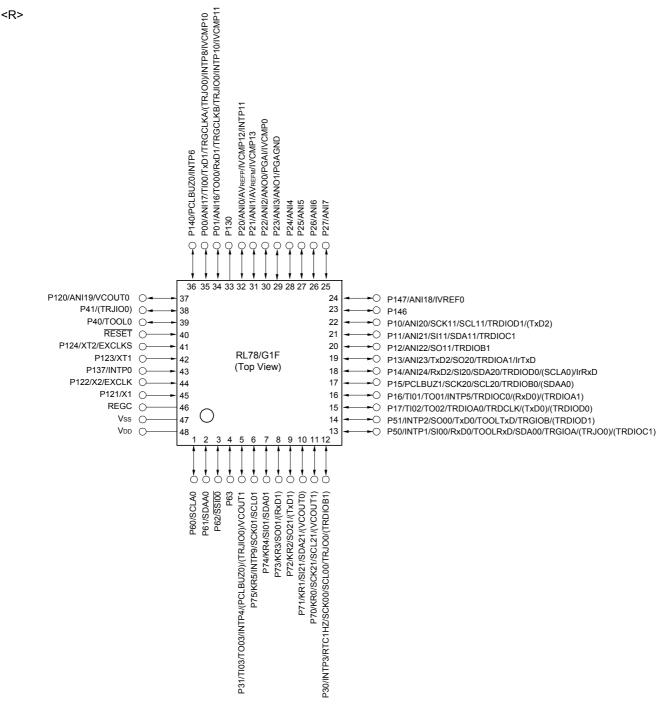
• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	А	В	С	D	E	F	
6	EVDD0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P61/SDAA0	P60/SCLA0	Vss	REGC	RESET	P124/XT2/ EXCLKS	5
4	P31/TI03/TO03/ INTP4/PCLBUZ0/ SSI00/(TRJIO0)/ VCOUT1	P14/ANI24/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)/IrRxD	P20/ANI0/ AVREFP/IVCMP12/ INTP11	P21/ANI1/ AVREFM/IVCMP13	P01/ANI16/TO00/ RxD1/TRGCLKB/ TRJIO0/INTP10/ IVCMP11	P123/XT1	4
3	P50/INTP1/SI00/ RxD0/TOOLRxD/ SDA00/TRGIOA/ (TRJO0)/ (TRDIOC1)	P70/INTP6/ (VCOUT0)/ (VCOUT1)	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P23/ANI3/ANO1/ PGAGND	P00/ANI17/TI00/ TxD1/TRGCLKA/ (TRJO0)/INTP8/ IVCMP10	P120/ANI19/ VCOUT0	3
2	P30/INTP3/ RTC1HZ/SCK00/ SCL00/TRJO0/ (TRDIOB1)	P16/TI01/TO01/ INTP5/TRDIOC0/ (RxD0)/ (TRDIOA1)	P12/ANI22/SO11/ TRDIOB1	P11/ANI21/SI11/ SDA11/TRDIOC1	P24/ANI4	P22/ANI2/ANO0/ PGAI/IVCMP0	2
1	P51/INTP2/SO00/ TxD0/TOOLTxD/ TRGIOB/ (TRDIOD1)	P17/TI02/TO02/ TRDIOA0/ TRDCLK0/(TxD0)/ (TRDIOD0)	P13/ANI23/TxD2/ SO20/TRDIOA1/ IrTxD	P10/ANI20/ SCK11/SCL11/ TRDIOD1/(TxD2)	P147/ANI18/ IVREF0	P25/ANI5	1
	А	В	С	D	E	F	•

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

Remark 3. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins.

RENESAS

1.3.4 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

Absolute Maximum Ratings

(2/2)

Absolute maximum Ra	ungs				(214
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	-40	mA
		Total of all	P00 to P04, P40 to P43,P120, P130, P140, P141	-70	mA
		pins -170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40-P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	40	mA
		Total of all	P00 to P04, P40 to P47, P120, P130, P140, P141	70	mA
		pins 170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	100	mA
	IOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient tem-	Та	In normal c	operation mode	-40 to +85	°C
perature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Uni	
Supply			HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA	
		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4			
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1			
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1			
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.2	8.7	mA	
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.2	8.7		
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.1		
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.1	6.9		
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.1	6.9		
				fносо = 24 MHz, Normal	Normal	VDD = 5.0 V		3.8	6.3		
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.3		
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6		
				fiн = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.6		
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.1	m/	
			mode Note 5	fiH = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	2.1		
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.9	m	
			mode Note 5	fiH = 4 MHz Note 3	operation	VDD = 2.0 V		1.3	1.9		
		HS (high-speed main) mode Note 5	fmx = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3	m		
			VDD = 5.0 V	operation	Resonator connection		3.5	5.5			
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		3.3	5.3		
						Resonator connection		3.5	5.5	-	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		2	3.1		
						Resonator connection		2.1	3.2		
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		2	3.1		
					operation	Resonator connection		2.1	3.2		
			LS (low-speed main)	fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	m	
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.2	2		
				fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9		
				VDD = 2.0 V	operation	Resonator connection		1.2	2		
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μ	
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1		
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1		
				TA = +25°C	operation	Resonator connection		4.7	6.1	4	
			fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	-		
			T _A = +50°C	operation	Resonator connection		4.8	6.7			
					fs∪в = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.8	7.5	1
				$T_A = +70^{\circ}C$	operation	Resonator connection		4.8	7.5	-	
				fs∪в = 32.768 kHz ^{Note 4}	Normal	Square wave input		5.4	8.9		
				$T_A = +85^{\circ}C$	operation	Resonator connection		5.4	8.9	1	

(TA = -40 to +85°C	, 1.6 V \leq EVDD0 \leq VDD \leq 5.	5 V, Vss = EVsso = 0 V
--------------------	---	---------------------------

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

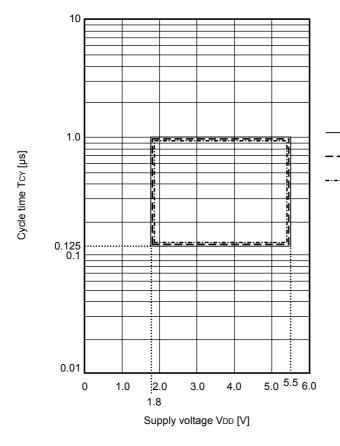
HS (high-speed main) mode:	2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz
LV (low-voltage main) mode:	1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter Syr			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.8	3.09	mA
Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.8	3.09	1
				fносо = 32 MHz,	VDD = 5.0 V		0.54	2.4	1
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.54	2.4	1
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.4	1
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.4	1
				fносо = 24 MHz,	VDD = 5.0 V		0.44	1.83	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.44	1.83	1
				fносо = 16 MHz,	VDD = 5.0 V		0.4	1.38	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.4	1.38	
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	790	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		260	790	
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	830	μA
			mode Note 7	fiH = 4 MHz Note 4	V _{DD} = 2.0 V		420	830	
			HS (high-speed main)	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.55	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.49	1.74	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55	
				V _{DD} = 3.0 V	Resonator connection		0.49	1.74	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.19	0.86	
					Resonator connection		0.3	0.93	
					Square wave input		0.19	0.86	
					Resonator connection		0.3	0.93	
				- ,	Square wave input		95	640	μA
				VDD = 3.0 V	Resonator connection		145	680	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	640	
				VDD = 2.0 V	Resonator connection		145	680	1
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μA
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.3	0.57	
				TA = 25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.36	1.17	
				TA = 50°C	Resonator connection		0.59	1.36	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.49	1.97	
				T _A = 70°C	Resonator connection		0.72	2.16	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.97	3.37	
				TA = 85°C Resonator connecti			1.16	3.56	
	IDD3	STOP mode	TA = -40°C				0.18	0.51	μA
	Note 6	Note 8	TA = +25°C				0.24	0.51	
			$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$				0.29	1.1	
							0.41	1.9	
			TA = +85°C				0.9	3.3	

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

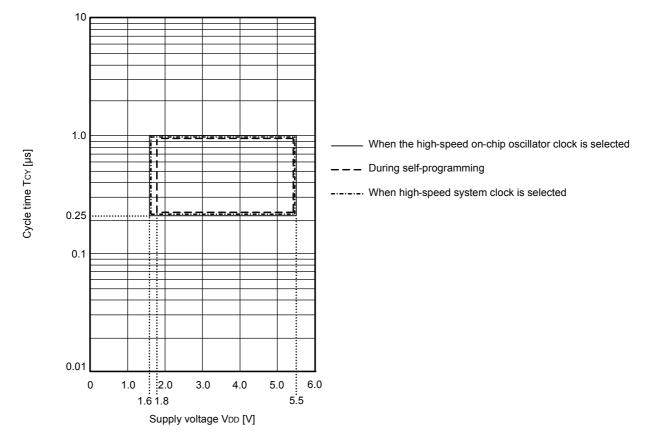
(2/2)


(Notes and Remarks are listed on the next page.)

Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтDiн, tтDi∟	TRDIOA0, TRDIOA1, TRDIO TRDIOC0, TRDIOC1, TRDIO		3/fclк			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB	1	2.5/fclк			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TRJIO0, TRJO0,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOC0, TRDIOC1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRDIOD0, TRDIOD1,		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
TRGIOA, TRGIOB			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
output frequency		LV (low-voltage main) mode	$1.6~V \le EV_{DD0} \le 5.5~V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1			μs
Key interrupt input low-level	tкr	KR0 to KR7	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl		1	10			μs

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/2)

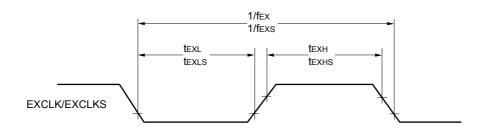


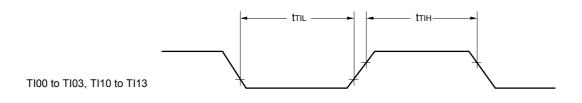
TCY vs VDD (LS (low-speed main) mode)

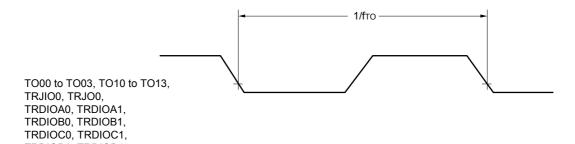
During self-programming
 When high-speed system clock is selected

When the high-speed on-chip oscillator clock is selected

TCY vs VDD (LV (low-voltage main) mode)




AC Timing Test Points



External System Clock Timing

TI/TO Timing

R01DS0246EJ0110 Rev. 1.10 Aug 12, 2016

TRDIOD0, TRDIOD1, TRGIOA, TRGIOB

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol	(Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-vol main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tĸcy1 ≥ 4/fcLĸ	$2.7~V \leq \text{Evdd0} \leq 5.5~V$	125		500		1000		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	250		500		1000		ns
			$1.8~V \leq EV_{DD0} \leq 5.5~V$	500		500		1000		ns
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	1000		1000		1000		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
SCKp cycle time	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$			tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50	ain) mode N. MAX. NO	ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50 tксү1/2 - 50 tксү1/2 - 100 tксү1/2 - 100 110	ns	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 100		tксү1/2 - 100		tксү1/2 - 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		tксү1/2 - 100		tксү1/2 - 100		ns
	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	44		110		110		ns
(to SCKp↑) ^{Note 1}		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
		$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	110		110		110	MAX. MAX. MAX. MAX. MAX. MAX. MAX. MAX.	ns
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	220		ns						
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		220		220		ns
	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	\leq 5.5 V	—		19		19		ns
SCKp↓ to SOp output	tĸso1	$1.7 V \le EV_{DD0}$ C = 30 pF Note			25		25		25	ns
NOLE 3		$1.6 V \le EV_{DD0}$ C = 30 pF Note			Image: Constraint of the constrated of the constraint of the constraint of the constraint of the	25	ns			

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3, 5, 7)

Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

Parameter	Symbol	Cond	Conditions		d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	20 MHz < fмск	8/fмск		—		—		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	16 MHz < fмск	8/fмск		—		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6/fмск and 500		6/fмск and 500		6/fмск and 500		ns	
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6/fмск and 750		6/fмск and 750		6/fмск and 750		ns	
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
1.6		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tкн2,	$4.0~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
low-level width	tĸL2	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	tkcy2/2 - 66		tkcy2/2 - 66		tксү2/2 - 66		ns	
		$1.6~V \leq EV_{DD0} \leq 5.5~V$		—		tkcy2/2 - 66	ксү2/2 - 66 tксү2/2 - 66		ns	
SIp setup time	tsik2	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8~V \le EV_{DD0} \le 5.5~V$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		_		1/fмск + 40		1/fмск + 40		ns
Slp hold time	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		—		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

Parameter	Symbol		Conditions		-speed main) node	-	LS (low-speed main) mode		voltage main) node	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate			$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			$\label{eq:constraint} \hline Theoretical value of the maximum transfer rate \\ C_b = 50 \mbox{ pF}, \ R_b = 2.7 \ k\Omega, \\ V_b = 2.3 \ V \\ \hline \end{array}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k}\Omega, \\ V_b = 1.6 \mbox{ V} \end{array}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

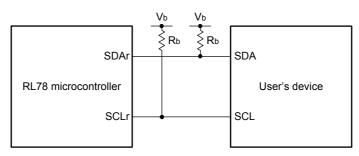
Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

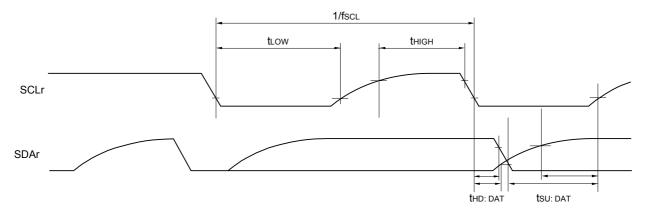
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$Baud rate error (theoretical value) = \frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.


Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Note 5. Use it with $EVDD0 \ge V_b$.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20), g: PIM, POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10)

3.3 DC Characteristics

3.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147				-3.0 Note 2	mA
		Total of P00 to P04, P40 to P43,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
	(When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-5.0	mA	
		Total of P05, P06, P10 to P17, P30, P31, P50 to P53, P70 to P77, P146, P147 (When duty \leq 70% ^{Note 3})	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-10.0	mA
Іон2		Total of all pins (When duty \leq 70% ^{Note 3})				-60.0	mA
	Іон2	Per pin for P20 to P27				-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 do not output high level in N-ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions			TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77,P120, P130, P140, P141, P146, P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P43,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P120, P130, P140, P141	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			9.0	mA
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P30, P31, P50 to P55, P60 to	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA
		P63, P70 to P77, P146, P147 (When duty ≤ 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				80.0	mA
	IOL2	Per pin for P20 to P27				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \leq V \text{DD} \leq 5.5~V$			5.0	mA

 $40.45 + 40.5^{\circ}C$ 2.4.17 = 51/555 = 51/575 = 51/575 = 51/575 = 0.10

(0/E)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high VIH1	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	P01, P03, P04, P10, P14 to P17, P30, P43, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V	
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	Vінз	P20 to P27 (when P20 is used as	0.7 Vdd		Vdd	V	
VIH4 VIH5	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	Vih5	P121 to P123, P137, EXCLK, EX P20 is used as INTP11 pin)	0.8 Vdd		Vdd	V	
Input voltage, low VIL1	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
VIL3			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27 (when P20 is used as	0		0.3 Vdd	V	
	VIL4	P60 to P63	0		0.3 EVDD0	V	
Vil	VIL5	P121 to P124, P137, EXCLK, EXCLKS, RESET (when P20 is used as INTP11 pin)		0		0.2 Vdd	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed	HS (high-speed main) mode			
				MIN.	MAX.			
SCKp cycle time	t КСҮ1	tkcy1 ≥ 2/fclk	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		ns		
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	500		ns		
SCKp high-/low-level width	tкн1, 4.0 V ≤ EVDD0 ≤ 5.5 V		5.5 V	tксү1/2 - 24		ns		
	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tkcy1/2 - 36		ns		
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 76				
SIp setup time (to SCKp↑) Note 1	tsiкı	$4.0 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		66		ns		
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		66		ns		
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		113				
SIp hold time (from SCKp [↑]) Note 2	tksi1	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		38		ns		
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF Note 4		C = 20 pF Note 4			50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3, 5, 7)

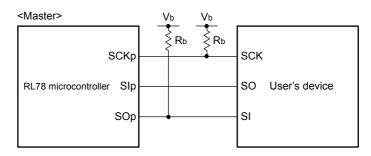
Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-speed	Unit	
			MIN.	MAX.	-
SCLr clock frequency	fsc∟	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 50 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 2.7 \Omega \end{array}$		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq E V_{DD0} \leq 5.5 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\label{eq:loss} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \Omega \end{array}$	1200		ns
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:states} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:loss_loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\label{eq:loss} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns
		$\label{eq:loss_loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns
		$\begin{array}{l} \text{2.4 V} \leq EV_{\text{DD0}} \leq \text{5.5 V},\\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	0	1420	ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

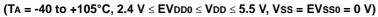
Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

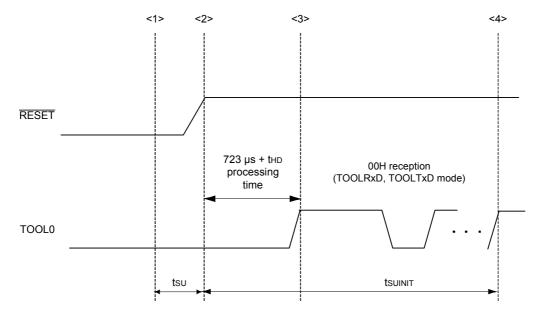
(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))


Remark 4. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

