

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, IrDA, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11bccala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin count	Package	Fields of Application ^{Note}	Ordering Part Number
24 pins	24-pin plastic HWQFN	A	R5F11B7CANA#U0, R5F11B7EANA#U0, R5F11B7CANA#W0, R5F11B7EANA#W0
	(4 × 4, 0.5 mm pitch)	G	R5F11B7CGNA#U0, R5F11B7EGNA#U0, R5F11B7CGNA#W0, R5F11B7EGNA#W0
32 pins	32-pin plastic LQFP	А	R5F11BBCAFP#30, R5F11BBEAFP#30, R5F11BBCAFP#50, R5F11BBEAFP#50
	(7 × 7, 0.8 mm pitch)	G	R5F11BBCGFP#30, R5F11BBEGFP#30, R5F11BBCGFP#50, R5F11BBEGFP#50
36 pins	36-pin plastic WFLGA	А	R5F11BCCALA#U0, R5F11BCEALA#U0, R5F11BCCALA#W0, R5F11BCEALA#W0
	(4 × 4 mm, 0.5 mm pitch)	G	R5F11BCCGLA#U0, R5F11BCEGLA#U0, R5F11BCCGLA#W0, R5F11BCEGLA#W0
48 pins	48-pin plastic LFQFP	А	R5F11BGCAFB#30, R5F11BGEAFB#30, R5F11BGCAFB#50, R5F11BGEAFB#50
	(7 × 7 mm, 0.5 mm pitch)	G	R5F11BGCGFB#30, R5F11BGEGFB#30, R5F11BGCGFB#50, R5F11BGEGFB#50
64 pins	64-pin plastic LFQFP	А	R5F11BLCAFB#30, R5F11BLEAFB#30, R5F11BLCAFB#50, R5F11BLEAFB#50
	(10 × 10 mm, 0.5 mm pitch)	G	R5F11BLCGFB#30, R5F11BLEGFB#30, R5F11BLCGFB#50, R5F11BLEGFB#50

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1F.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} = V_{DD} \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	1.0		16.0	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	1.0		8.0	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	fін	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}_{DD}$	V	1		32	MHz
Notes 1, 2		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}_{\text{DD}}$	V	1		16	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$				8	MHz
		$1.6 V \le V_{DD} < 1.8 V_{DD}$	1		4	MHz	
High-speed on-chip oscillator clock frequency		TA = -20 to +85°C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1		1	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5		5	%
		TA = -40 to -20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-1.5		1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G1F User's Manual.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	loL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77,P120, P130, P140, P141, P146, P147 Per pin for P60 to P63				20.0 Note 2 15.0 Note 2	mA mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141 (When duty ≤ 70% ^{Note 3})	$4.0~V \leq EV_{DD0} \leq 5.5~V$			70.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV \text{DD0} \leq 5.5~V$			80.0	mA
		P30, P31, P50 to P55, P60 to	$2.7~V \leq EV_{DD0} < 4.0~V$			35.0	mA
		P63, P70 to P77, P146, P147	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
		(When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

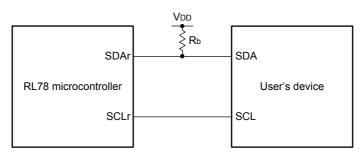
<Example> Where n = 80% and I_{OL} = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

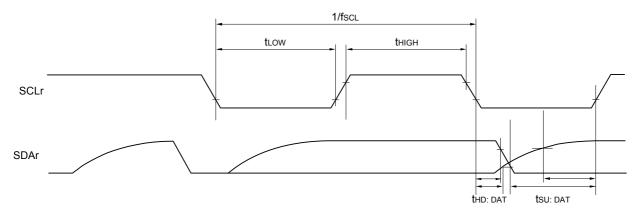
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55,	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -10.0 mA	EVDD0 - 1.5			V
		P70 to P77, P120, P130, P140, P141, P146, P147	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -3.0 mA	EVDD0 - 0.7			V
			2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
			1.8 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EVDD0 < 1.8 V, Іон1 = -1.0 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27	1.6 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	Vdd - 0.5			V
Output voltage, low	VOL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 20.0 mA			1.3	V
		P70 to P77, P120, P130, P140, P141, P146, P147	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 1.5 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 to P27	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$ $I_{OL2} = 400 \mu\text{A}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ IOL3 = 1.0 mA			0.4	V


(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(4/5)


Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 do not output high level in N-ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7),
 - h: POM number (h = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

Parameter	Symbol		Conditions		-speed main) node	,	-speed main) mode		voltage main) mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

Note 3.The following conditions are required for low voltage interface when EVDD0 < VDD. $2.4 V \le EVDD0 < 2.7 V$: MAX. 2.6 Mbps $1.8 V \le EVDD0 < 2.4 V$: MAX. 1.3 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:

HS (high-speed main) mode:	32 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

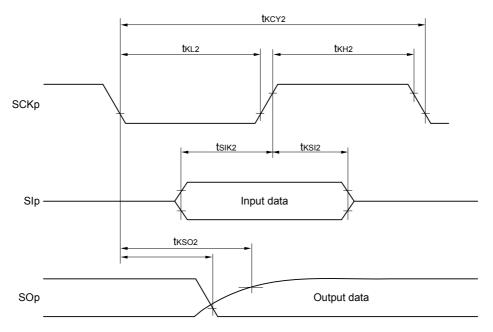
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage

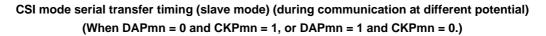
Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)

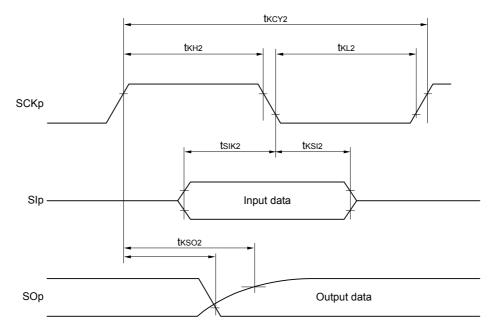
Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.



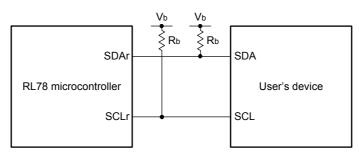
(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

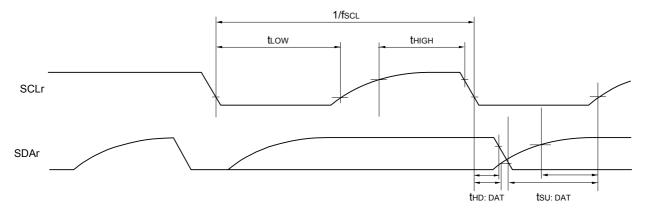

Parameter	Symbol	Cor	nditions		h-speed mode		/-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V,$	24 MHz < fмск	14/fмск		—		_		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fмск ≤ 24 MHz	12/fмск		_		_		ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	10/fмск		_		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7~V \leq EV_{DD0} < 4.0~V,$	24 MHz < fмск	20/fмск		—		—		ns
		$2.3~V \leq V_b \leq 2.7~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	16/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		—		—		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	12/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	48/fмск		_		_		ns
		$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 2	20 MHz < fмск ≤ 24 MHz	36/fмск		_		_		ns
	Note		16 MHz < fмск ≤ 20 MHz	32/fмск		—		_		ns
		8 MHz < fмск ≤ 16 MHz	26/fмск		_		_		ns	
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкL2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, 2$	$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, $	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note 2}$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 4.0 \text{ V}, 2$	$2.7 \ V \leq EV \text{dd} \leq 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V$			1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.3 \text{ V}, $	$1.6~V \leq V_b \leq 2.0~V$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tĸso2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$ Cb = 30 pF, Rb = 1.4 kΩ			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output Note 5		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ C_b = 30 \ pF, \ R_V = 5.5 \ k\Omega \end{array}$	$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns


(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(Notes, Cautions, and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)




Remark 1. p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20), g: PIM, POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10)

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission) Note 2	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	—		0	3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7	Ī	4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEDAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

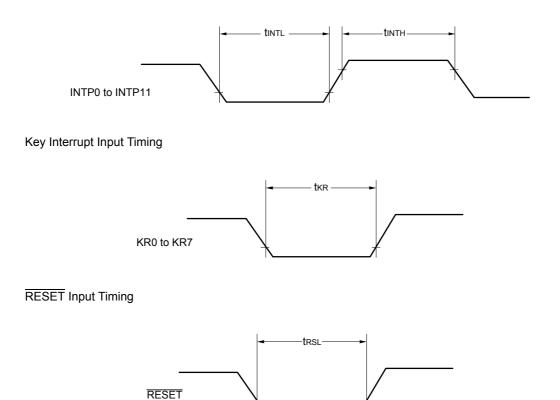
Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq EV_{DD0} \leq 5.5~V$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEDAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

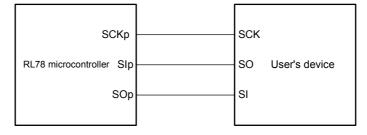

2.6.7 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection threshold			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		Vlvd3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		Vlvd9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum pul	lse width	t∟w		300			μs
Detection de	lay time					300	μs

Interrupt Request Input Timing


(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)(2/2)

Parameter	Symbol	ibol Conditions		HS (high-speed ma	ain) mode	Unit
				MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	240		ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

SCK00	SCK
SI00	so
RL78 microcontroller SO00	 User's device SI
<u>SSI00</u>	SSO

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C})$	$c, 2.4 \text{ V} \leq \text{EVDD0} \leq \text{VDD} \leq 5.5 \text{ V}$	/ Vss - EVsso - 0 V)
(1A = -40 10 + 103 0		v, v 33 – L v 330 – U v j

(1/2)

Parameter	Symbol		Conditions		HS (high-sp	peed main) mode	Unit
					MIN.	MAX.	
Transfer rate		reception	$4.0 V \le EV_{DD0} \le 5.5$ $2.7 V \le V_b \le 4.0 V$	V,		f _{MCK} /12 Note 1	bps
		Theoretical value transfer rate fMCK = fCLK Note	e of the maximum		2.6	Mbps	
			$2.7 V \le EV_{DD0} < 4.0$ $2.3 V \le V_b \le 2.7 V$	V,		fмск/12 Note 1	bps
		Theoretical value transfer rate f _{MCK} = f _{CLK} Note	e of the maximum		2.6	Mbps	
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	V,		fмск/12 Notes 1, 2	bps
			Theoretical value transfer rate f _{MCK} = f _{CLK} Note	e of the maximum		1.3	Mbps

 Note 1.
 Transfer rate in the SNOOZE mode is 4800 bps only.

 However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps

 $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spee	HS (high-speed main) mode		
				MIN.	MAX.		
SCKp cycle time Note 1	tксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,$	24 MHz < fмск	28/fмск		ns	
		$2.7~V \leq V_b \leq 4.0~V$	$20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$	24/fмск		ns	
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	20/fмск		ns	
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns	
			fмск ≤ 4 MHz	12/fмск		ns	
		$2.7~V \leq EV_{\text{DD0}} < 4.0~V,$	24 MHz < fмск	40/fмск		ns	
		$2.3~V \leq V_b \leq 2.7~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	32/fмск		ns	
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	28/fмск		ns	
			8 MHz < fmck \leq 16 MHz	24/fмск		ns	
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/f мск		ns	
			fмск ≤ 4 MHz	12/fмск		ns	
		$2.4 \text{ V} \le EV_{DD0} < 3.3 \text{ V},$ $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	24 MHz < fмск	96/fмск		ns	
			$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	72/fмск		ns	
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	64/fмск		ns	
			8 MHz < fmck \leq 16 MHz	52/fмск		ns	
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/fмск		ns	
			fмск ≤ 4 MHz	20/fмск		ns	
SCKp high-/low-level	tĸн₂, tĸ∟₂	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.$	$7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}$	tkcy2/2 - 24		ns	
width		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$			ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.$	$6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	tксү2/2 - 100		ns	
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.$	$3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 40		ns	
(to SCKp [↑]) Note 2		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.$	$6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	1/fмск + 60		ns	
SIp hold time (from SCKp↑) Note 3	tksi2			1/fмск + 62		ns	
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} \mbox{4.0 V} \le \mbox{EV}_{\mbox{DD0}} \le 5.5 \mbox{ V}, \mbox{2.} \\ \mbox{C}_{\mbox{b}} = 30 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 1.4 \mbox{k}\Omega \end{array}$	$7~V \leq V_b \leq 4.0~V,$		2/fмск + 240	ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2. \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$3~V \leq V_b \leq 2.7~V,$		2/fмск + 428	ns	
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1. \\ C_b = 30 \ pF, \ R_v = 5.5 \ k\Omega \end{array}$	$6~V \leq V_b \leq 2.0~V,$		2/fмск + 1146	ns	

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(Notes and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq	$EVDD0 \leq VDD \leq$	5.5 V, VSS = EVSS0 = 0 V)	

(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	nain) mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 2		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1/f _{MCK} + 760 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 760 Note 2		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI24

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.4 \text{ V}_{\text{DD}} \leq 1000 \text{ M}_{\odot}$	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI24	•	0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	are as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.

3.6.4 Comparator

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP				±5	±40	mV
Input voltage range	VICMP			0		Vdd	V
Internal reference	ΔV_{IREF}	CmRVM register value : 7	FH to 80H (m = 0, 1)			±2	LSB
voltage deviation		Other than above				±1	LSB
Response Time	tcr, tcr	Input amplitude±100mV			70	150	ns
Operation stabilization	t CMP	CMPn = 0→1	V _{DD} = 3.3 to 5.5 V			1	μs
time ^{Note 1}			V _{DD} = 2.7 to 3.3 V			3	μs
Reference voltage stabilization wait time	tvr	$CVRE: 0 \rightarrow 1^{Note 2}$				20	μs
Operation current	ICMPDD	Separately, it is defined as	the operation current of perip	heral function	ons.		

$(TA = -40 \text{ to } +105^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. Time taken until the comparator satisfies the DC/AC characteristics after the comparator operation enable signal is switched (CMPnEN = $0 \rightarrow 1$).

Note 2. Enable comparator output (CnOE bit = 1; n = 0 to 1) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 1) and waiting for the operation stabilization time to elapse.

3.6.5 PGA

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Input offset voltage	VIOPGA					±10	mV
Input voltage range	Vipga		0		$\begin{array}{c} 0.9 \times V_{\text{DD}} / \\ \text{Gain} \end{array}$	V	
Output voltage range	VIOHPGA						V
	VIOLPGA					$0.07 \times V_{\text{DD}}$	V
Gain error		x4, x8				±1	%
		x16			±1.5	%	
		x32			±2	%	
Slew rate	SRRPGA SRFPGA	Rising When Vin= 0.1V₀₀/gain to 0.9V₀₀/gain.	$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			V/µs
		10 to 90% of output voltage amplitude SRFPGA Falling When Vin= 0.1Vpp/gain	$4.0 V \le V_{DD} \le 5.5 V (x32)$	3.0			
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
			$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			
		to 0.9V₀₀/gain. 90 to 10% of output	$4.0 V \le V_{DD} \le 5.5 V (x32)$	3.0			
		voltage amplitude	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
Reference voltage	t PGA	x4, x8	1			5	μs
stabilization wait time- Note 1		x16, x32				10	μs
Operation current	PGADD	Separately, it is defined a	as the operation current of per	ipheral function	ons.	•	

Note 1. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

(2) Interrupt & Reset Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

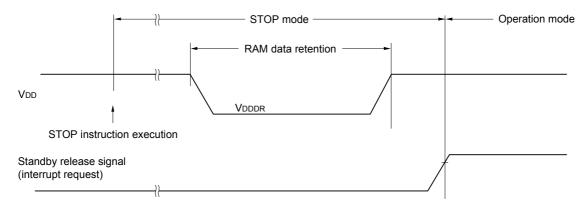
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Voltage detection	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, 1	OC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.86	V
threshold	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.


3.7 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Notes 1, 2		5.5	V

Note 1. The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Note 2. Enter STOP mode before the supply voltage falls below the recommended operating voltage.

3.8 Flash Memory Programming Characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1		32	MHz

