

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

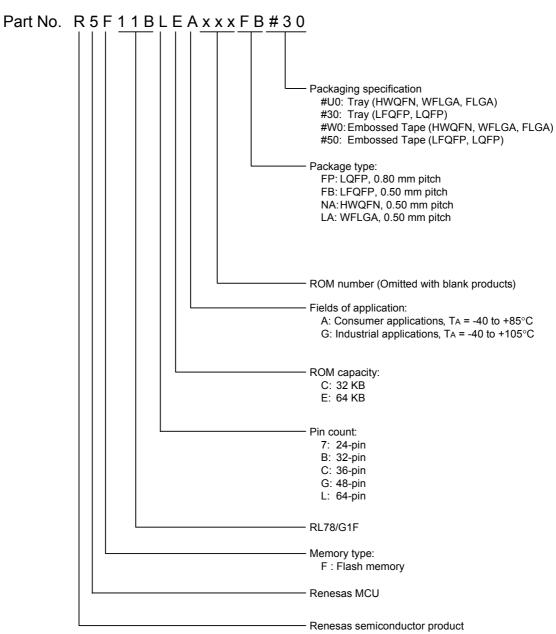
Details

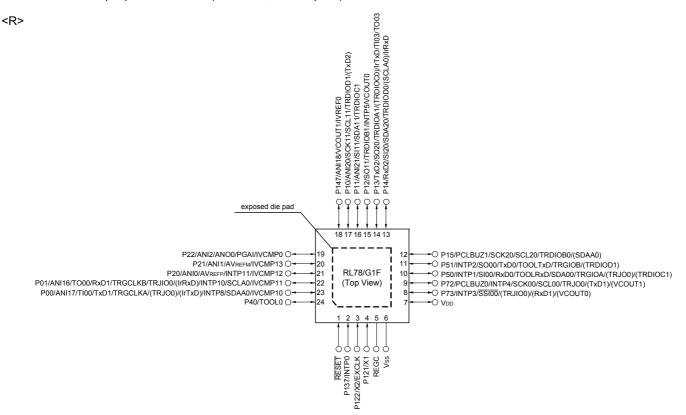
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, IrDA, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11bceala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information




Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1F

1.3 Pin Configuration (Top View)

1.3.1 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

		+	•	•	•	(1/				
		24-pin	32-pin	36-pin	48-pin	64-pin				
	Item	R5F11B7x (x = C, E)	R5F11BBx (x = C, E)	R5F11BCx (x = C, E)	R5F11BGx (x = C, E)	R5F11BLx (x = C, E)				
Code flash mer	mory (KB)	32, 64	32, 64	32, 64	32, 64	32, 64				
Data flash men	nory (KB)	4	4	4	4	4				
RAM (KB)		5.5 Note 5.5 Note 5.5 Note 5.5 Note 5.5 Note								
Address space		1 MB								
Main system clock	High-speed system clock	HS (high-speed r HS (high-speed r LS (low-speed m	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (V _{DD} = 1.8 to 2.7 V), LV (low-voltage main) mode: 1 to 4 MHz (V _{DD} = 1.6 to 1.8 V)							
	High-speed on-chip oscillator clock (fi⊢)	HS (high-speed main) mode:1 to 32 MHz (VDD = 2.7 to 5.5 V),HS (high-speed main) mode:1 to 16 MHz (VDD = 2.4 to 5.5 V),LS (low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 5.5 V),LV (low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 5.5 V)								
Subsystem clo	ck	-	_	XT1 (crystal) oscillat (EXCLKS) 32.768 kl	tion, external subsyst Hz	em clock input				
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD	= 1.6 to 5.5 V							
General-purpos	se register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)								
Minimum instru	iction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fiH = 32 MHz operation)								
		0.05 μs (High-speed	d system clock: fmx =	20 MHz operation)						
		-	_	30.5 µs (Subsystem	clock: fsue = 32.768	kHz operation)				
		Multiplication (8 biMultiplication and	Accumulation (16 bits	6 bits), Division (16 b		,				
I/O port	Total	20	28	31	44	58				
	CMOS I/O	17 (N-ch O.D. output [VDD withstand voltage]: 10)	25 (N-ch O.D. output [VDD withstand voltage]: 12)	24 (N-ch O.D. output [V _{DD} withstand voltage]: 10)	34 (N-ch O.D. output [VDD withstand voltage]: 12)	48 (N-ch O.D. outpu [V _{DD} withstand voltage]: 12)				
	CMOS input	3	3	5	5	5				
	CMOS output	_	_	—	1	1				
	N-ch open-drain I/O (6 V tolerance)	_	_	2	4	4				
Timer	16-bit timer	9 channels (TAU: 4 channels, T Timer RG: 1 channe		ïmer RD: 2 channels	(with PWMOPA), Tim	ner RX: 1 channel,				
	Watchdog timer	1 channel								
	Real-time clock (RTC)	1 channel								
	12-bit interval timer	1 channel								
	Timer output	Timer outputs: Timer outputs: 13 channels 16 channels PWM outputs: PWM outputs: 8 channels 9 channels								
	RTC output	- 1 Hz (subsystem clock: fsub = 32.768 kHz)								

Note

This is about 4.5 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/G1F User's Manual).

(1/2)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 ^{Note 1}	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	and -0.3 to V _{DD} +0.3 Note 2	
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	V02	P20 to P27	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI24	-0.3 to EVDD0 +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI7	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- Remark 2. AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

Parameter	Symbol		Conditions			MIN.	TYP. MAX.	Unit	
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.8	3.09	mA
Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.8	3.09	1
				fносо = 32 MHz,	VDD = 5.0 V		0.54	2.4	1
			fiH = 32 MHz Note 4	VDD = 3.0 V		0.54	2.4	1	
			fHOCO = 48 MHz,	VDD = 5.0 V		0.62	2.4	1	
			fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.4	1	
				fhoco = 24 MHz,	VDD = 5.0 V		0.44	1.83	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.44	1.83	1
				fносо = 16 MHz,	VDD = 5.0 V		0.4	1.38	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.4	1.38	
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	790	μA
		mode Note 7	fiн = 8 MHz Note 4	VDD = 2.0 V		260	790		
			mode Note 7 HS (high-speed main)	fносо = 4 MHz, fiн = 4 MHz ^{Note 4}	VDD = 3.0 V		420	830	μA
					V _{DD} = 2.0 V		420	830	
					Square wave input		0.28	1.55	mA
		mode Note 7	VDD = 5.0 V	Resonator connection		0.49	1.74		
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55	
			V _{DD} = 3.0 V	Resonator connection		0.49	1.74		
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.86		
			VDD = 5.0 V	Resonator connection		0.3	0.93		
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.19	0.86	
					Resonator connection		0.3	0.93	
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		95	640	μΑ
					Resonator connection		145	680	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	640	
				VDD = 2.0 V	Resonator connection		145	680	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μA
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.3	0.57	
				TA = 25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.36	1.17	
				TA = 50°C	Resonator connection		0.59	1.36	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.49	1.97	
				T _A = 70°C	Resonator connection		0.72	2.16	
			fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.97	3.37		
		T _A = 85°C Resonator connection				1.16	3.56		
		STOP mode	TA = -40°C				0.18	0.51	μA
	Note 6	Note 8	TA = +25°C				0.24	0.51	
			TA = +50°C	$T_A = +50^{\circ}C$				1.1]
			TA = +70°C				0.41	1.9	
			TA = +85°C				0.9	3.3	

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/2)

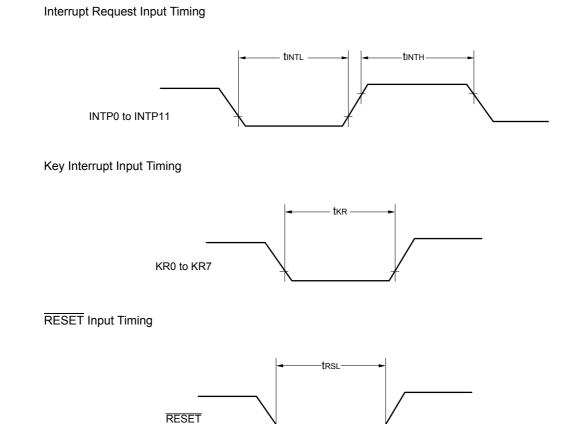
(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq Vdd \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $$1.8~V \le V_{DD} \le 5.5~V@1~MHz$ to 8~MHz$$
 - LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.2		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	I _{ADC} Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1			75		μA	
Temperature sensor operat- ing current	ITMPS Note 1				75		μA
D/A converter operating cur- rent	IDAC Notes 1, 11	Per D/A converter channel			1.5	mA	
PGA operating current		Operation			480	700	μA
Comparator operating cur- rent	ICMP Notes 1, 12	Operation (per comparator chan- nel, constant current for compara-	When the internal reference voltage is not in use		50	100	μA
		tor included)	When the internal reference voltage is in use		60	110	μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operat- ing current	IFSP Notes 1, 9				2.5	12.2	mA
BGO operating current	IBGO Notes 1, 8				2.5	12.2	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.5	0.6	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.2	1.44	
		CSI/UART operation			0.7	0.84	ĺ
		DTC operation			3.1		ĺ

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.


- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- **Note 9.** Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 26.3.3 SNOOZE mode in the RL78/G1F User's Manual.

Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтDiн, tтDi∟	TRDIOA0, TRDIOA1, TRDIO TRDIOC0, TRDIOC1, TRDIO	3/fclк			ns	
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB	1	2.5/fclк			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRDIOD0, TRDIOD1,		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
TRGIOA, TRGIOB output frequency			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.6~V \le EV_{DD0} \le 5.5~V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1			μs
Key interrupt input low-level	tкr	KR0 to KR7	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl		1	10			μs

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/2)

Parameter	Symbol	Conditions		speed main) ode		peed main) ode	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_b \mbox{ = 100 pF}, \mbox{ R}_b \mbox{ = 5 } \kappa\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_b \mbox{ = 100 pF}, \mbox{ R}_b \mbox{ = 5 } \kappa\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		_		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:bound} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	—		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{Cb} = 50 \ \text{pF}, \ \text{Rb} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} \mbox{=} 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} \mbox{=} 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:loss} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	_		1850		1850		ns

(5) During communication at same potential (simplified I²C mode)

T. 10.1. 0500				
$IA = -40 \text{ to } +85^{\circ}\text{C}$, 1.6 V ≤ EVDD0	\leq VDD \leq 5.5 V,	VSS = EVSS0 = 0 V	

(1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	Conditions HS (high-speed main) LS (mode		LS (low-speed m mode	nain)	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 85 Note 2		1/fмск + 145 Note 2		1/fmck + 145 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1/fмск + 230 Note 2		1/fMCK + 230 Note 2		1/fмск + 230 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1/fмск + 290 Note 2		1/f _{MCK} + 290 Note 2		1/fмск + 290 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	_		1/f _{MCK} + 290 Note 2		1/fмск + 290 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	_		0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸı		23		110		110		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		10		10		10	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/2)

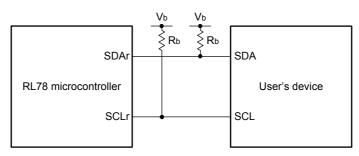
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

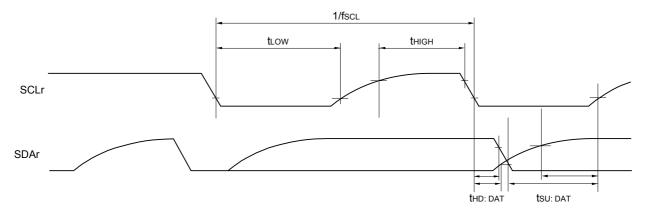
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)


Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.


(mn = 00))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20), g: PIM, POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10)

Absolute Maximum Ratings

(2/2)

		(2/2			
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	-40	mA
		Total of all	P00 to P04, P40 to P43,P120, P130, P140, P141	-70	mA
		pins -170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40-P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P47, P120, P130, P140, P141	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	100	mA
	IOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient tem-	Та	In normal c	operation mode	-40 to +105	°C
perature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TA = -40 to +105	C , Z . 4 V 	$\leq EVDD0 \leq VDD \leq 5.5 V, VSS = EV$	550 = 0 V)				_	(5/5
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage cur- rent, high	Ішнт	P00 to P06, P10 to P17, P30, VI = EVDD0 P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147					1	μA
	ILIH2	P20 to P27, P137, RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator con- nection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVsso				-1	μA
	ILIL2	P20 to P27, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator con- nection			-10	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVsso	, In input port	10	20	100	kΩ

ſ	= -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)	
•	= +0.0011000, 2.4122000 = 0.001, 100 = 21000 = 0.01	

(5/5)

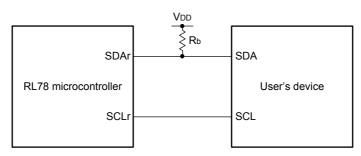
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(4) During communication at same potential (simplified I²C mode)

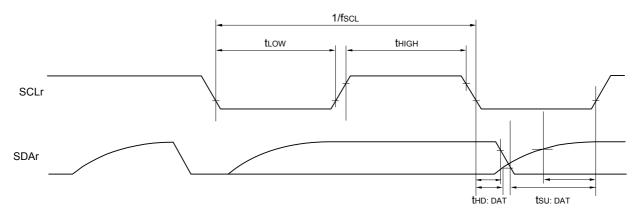
Parameter	Symbol	Conditions	HS (high-speed	Unit		
			MIN.	MAX.	1	
SCLr clock frequency	fsc∟	$\label{eq:loss} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 50 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 2.7 \Omega \end{array}$		400 Note 1	kHz	
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq E V_{DD0} \leq 5.5 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$		100 Note 1	kHz	
Hold time when SCLr = "L"	t∟ow	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns	
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns	
Hold time when SCLr = "H"	tнigн	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns	
		$\label{eq:loss_loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns	
Data setup time (reception)	n) tsu: dat	$\label{eq:loss} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns	
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns	
		$\begin{array}{l} \text{2.4 V} \leq EV_{\text{DD0}} \leq \text{5.5 V},\\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	0	1420	ns	

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7),
- h: POM number (h = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

1	$A = -40$ to $+105^{\circ}C$, 2.4 V $\leq EVDD0 \leq VDD \leq 5.5$ V, VSS = EVSS0 = 0 V)	
. 1	$A = -40 (0 + 103 0, 2.4 v \le 2 v D D 0 \le v D D \le 3.3 v, v 33 = 2 v 330 = 0 v)$	

(2/2)

Parameter Sym			Conditions		HS (high-speed main) mode	
				MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 kΩ, V_b = 2.7 V		2.6 Note 2	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega,$ $V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps
			$\label{eq:V} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Note 5	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

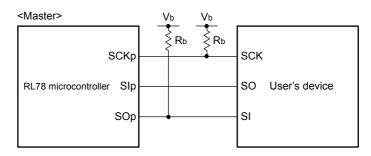
rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

$$\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\} \times 100 \,[\%]$$

$$(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Maximum transfer

Ва

RENESAS

CSI mode connection diagram (during communication at different potential

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Remark 4. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI24

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI20	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI24	•	0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	are as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.

