

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, IrDA, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11bgeafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G1F 1. OUTLINE

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

						•			
		24-pin	32-pin	36-pin	48-pin	64-pin			
	Item	R5F11B7x (x = C, E)	R5F11BBx (x = C, E)	R5F11BCx (x = C, E)	R5F11BGx (x = C, E)	R5F11BLx (x = C, E)			
Code flash mer	mory (KB)	32, 64	32, 64	32, 64	32, 64	32, 64			
Data flash men	nory (KB)	4	4	4	4	4			
RAM (KB)		5.5 Note	5.5 Note	5.5 Note	5.5 Note	5.5 Note			
Address space		1 MB							
Main system clock	High-speed system clock High-speed on-chip oscillator clock (fiн)	HS (high-speed r HS (high-speed r LS (low-speed m LV (low-voltage n HS (high-speed mai HS (high-speed main LS (low-speed main	main) mode: 1 to 20 M main) mode: 1 to 16 M ain) mode: 1 to 8 M main) mode: 1 to 4 M in) mode: 1 to 32 M in) mode: 1 to 16 M	main system clock inp MHz (VDD = 2.7 to 5.5 MHz (VDD = 2.4 to 5.5 Hz (VDD = 1.8 to 2.7 \text{ Hz (VDD = 1.6 to 1.8 \text{ VDD = 2.7 to 5.5 V})} Iz (VDD = 2.4 to 5.5 V) t (VDD = 1.8 to 5.5 V) t (VDD = 1.6 to 5.5 V)	V), V), /), /)				
Subsystem cloo	ck	_	_	XT1 (crystal) oscilla (EXCLKS) 32.768 k	tion, external subsyst Hz	em clock input			
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD	= 1.6 to 5.5 V						
General-purpos	se register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)							
Minimum instru	ction execution time	0.03125 μs (High-sp	peed on-chip oscillato	r clock: fiн = 32 MHz	operation)				
		0.05 μs (High-speed	d system clock: fmx =	20 MHz operation)					
		_	_	30.5 μs (Subsystem	clock: fsuB = 32.768	kHz operation)			
Instruction set		Multiplication (8 biMultiplication and	ctor/logical operation ts \times 8 bits, 16 bits \times 1 Accumulation (16 bits	6 bits), Division (16 b		,			
I/O port	Total	20	28	31	44	58			
	CMOS I/O	17 (N-ch O.D. output [VDD withstand voltage]: 10)	25 (N-ch O.D. output [Vpp withstand voltage]: 12)	24 (N-ch O.D. output [VDD withstand voltage]: 10)	34 (N-ch O.D. output [VDD withstand voltage]: 12)	48 (N-ch O.D. output [Vpp withstand voltage]: 12)			
	CMOS input	3	3	5	5	5			
	CMOS output	_	_	_	1	1			
	N-ch open-drain I/O (6 V tolerance)	_	_	2	4	4			
Timer	16-bit timer	9 channels (TAU: 4 channels, T Timer RG: 1 channe		imer RD: 2 channels	(with PWMOPA), Tim	ner RX: 1 channel,			
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 13 channels PWM outputs: 8 channels	Timer outputs: 16 channels PWM outputs: 9 channels						
	RTC output	-	_	1 • 1 Hz (subsystem of	clock: fsuB = 32.768 k	Hz)			

Note This is about 4.5 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/G1F User's Manual).

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EV _{DD0}		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 ^{Note 1}	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	and -0.3 to V _{DD} +0.3 Note 2	
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	Vo2	P20 to P27	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI24	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI7	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Must be 6.5 V or lower.
- Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

 That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- **Remark 2.** AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = V_{DD} \le 5.5 \text{ V}, Vss = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

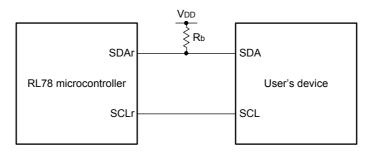
Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G1F User's Manual.

2.2.2 On-chip oscillator characteristics

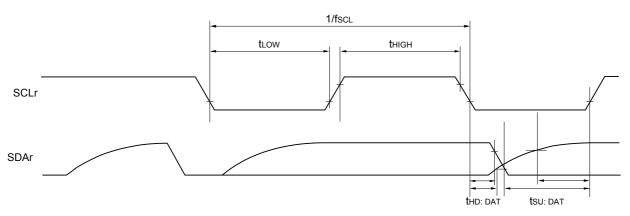
 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Oscillators	Parameters	Parameters Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	V	1		32	MHz		
Notes 1, 2		2.4 V ≤ V _{DD} < 2.7 V	V	1		16	MHz
		1.8 V ≤ V _{DD} < 2.4 V	V	1		8	MHz
		1.6 V ≤ VDD < 1.8 V				4	MHz
High-speed on-chip oscillator clock frequency		T _A = -20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1		1	%
accuracy			1.6 V ≤ VDD < 1.8 V	-5		5	%
		Ta = -40 to -20°C	1.8 V ≤ V _{DD} < 5.5 V	-1.5		1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.


Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)


Parameter	Symbol	Cond	ditions	HS (high-spee	d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkcy2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	20 MHz < fmck	8/fмск		_		_		ns
time Note 5			fмcк ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V	16 MHz < fmck	8/fмск		_		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
		1.6 V ≤ EVDD0 ≤ 5.5 V		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tĸн2,	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 7		tkcy2/2 - 7		tkcy2/2 - 7		ns
low-level width	tKL2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 18		tkcy2/2 - 18		tkcy2/2 - 18		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V	tkcy2/2 - 66		tkcy2/2 - 66		tkcy2/2 - 66		ns	
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsık2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		1.8 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		1/fмск + 40		1/fмск + 40		ns
SIp hold time	tks12	1.8 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	2.7 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			2.4 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
		1.8 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns	
			1.7 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		2/fмск + 220		2/fмск + 220	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\textbf{Remark 1.} \ \ R_b[\Omega]: \ Communication \ line \ (SDAr) \ pull-up \ resistance, \ C_b[F]: \ Communication \ line \ (SDAr, SCLr) \ load \ capacitance$

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7), h: POM number (h = 0, 1, 3, 5, 7)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Parameter	Symbol	Conditions	, ,	speed main) node		speed main) node	,	oltage main) node	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$ \begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:controller} \begin{split} 2.7 \ & V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ & V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} & = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{aligned}$	475		1550		1550		ns
		$ \begin{aligned} &2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ &2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ &C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	1150		1550		1550		ns
		$ 2.7 \ V \le EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \le V_b \le 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	1150		1550		1550		ns
		$\begin{split} 1.8 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b & = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	245		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{Cb} = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega $	200		610		610		ns
		$ 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.8 \text{ k}\Omega $	675		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		610		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{aligned}$	610		610		610		ns

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI24

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
		EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		Target ANI pin: ANI16 to ANI24	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
			1.6 V ≤ VDD ≤ 5.5 V	57		95	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
		EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI24		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

Note 4. When AVREFP \leq EVDD0 \leq VDD, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI17, ANI16 to ANI24, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
		Target pin: ANI0 to ANI7, ANI16 to ANI24	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			1.8 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
			1.6 V ≤ V _{DD} ≤ 5.5 V	57		95	μs
		10-bit resolution	3.6 V ≤ V _{DD} ≤ 5.5 V	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3			±0.85	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±4.0	LSB
			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Note 1			1.6 V ≤ V _{DD} ≤ 5.5 V Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI7	•	0		VDD	V
		ANI16 to ANI24		0		EV _{DD0}	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) i	mode)	١	/ _{BGR} Note	4	V
		Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI7, ANI16 to ANI24

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD0 \leq VDD, Vss = EVss0 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Co	Conditions		TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.3.2 Supply current characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.4		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.1		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.1		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		5.2	9.3	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.2	9.3	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		4.8	8.7	
			fiH = 32 MHz Note 3 operation	operation	V _{DD} = 3.0 V		4.8	8.7		
		fносо = 48 MHz,	Normal	V _{DD} = 5.0 V		4.1	7.3			
			fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.1	7.3		
			fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		3.8	6.7		
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		3.8	6.7	
				fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		2.8	4.9	
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		2.8	4.9	
			HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal operation	Square wave input		3.3	5.7	mA
			mode Note 5	V _{DD} = 5.0 V		Resonator connection		3.5	5.8	
				f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.3	5.7	
				V _{DD} = 3.0 V	operation	Resonator connection		3.5	5.8	
				f _{MX} = 10 MHz Note 2, V _{DD} = 5.0 V	Normal	Square wave input		2.0	3.4	
					operation	Resonator connection		2.1	3.5	
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.4	
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.5	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μΑ
			operation	Ta = -40°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				T _A = +25°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	
				T _A = +50°C	operation	Resonator connection		4.8	6.7	
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5			
		T _A = +70°C	operation	Resonator connection		4.8	7.5			
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9			
				T _A = +85°C	operation	Resonator connection		5.4	8.9	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		7.2	21.0	
				T _A = +105°C	operation	Resonator connection		7.3	21.1	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{@}1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. filh: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.2		μΑ
RTC operating current	I _{RTC} Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operat- ing current	IT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μА
A/D converter operating current	I _{ADC} Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75		μΑ
Temperature sensor operating current	ITMPS Note 1				75		μΑ
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter channel				1.5	mA
PGA operating current		Operation			480	700	μΑ
Comparator operating cur- rent	I _{CMP} Notes 1, 12	Operation (per comparator chan- nel, constant current for compara-	When the internal reference voltage is not in use		50	100	μА
		tor included)	When the internal reference voltage is in use		60	110	μΑ
LVD operating current	I _{LVD} Notes 1, 7				0.08		μΑ
Self-programming operating current	IFSP Notes 1, 9				2.50	12.2	mA
BGO operating current	I _{BGO} Notes 1, 8				2.50	12.2	mA
SNOOZE operating current	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).

 The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 26.3.3 SNOOZE mode in the RL78/G1F User's Manual.

- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(1/2)

Parameter Symbol			Conditions		HS (high-s	Unit	
					MIN. MAX.		
Transfer rate		reception	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6	Mbps
				$7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3		2.6	Mbps
				$V \le EV_{DD0} < 3.3 \text{ V},$ $V \le V_b \le 2.0 \text{ V}$		fмск/12 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V: MAX. } 2.6 \text{ Mbps}$

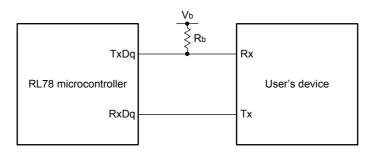
 $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

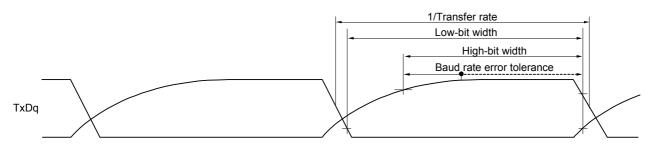
HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

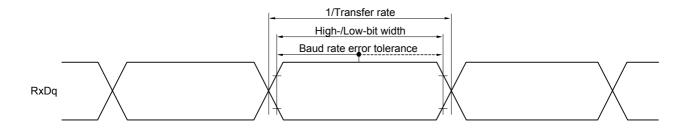
16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


- Remark 1. Vb [V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00 to 03, 10, 11)


Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
- Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	4.0 V ≤ EVDD0 ≤ 5.5 V,	24 MHz < fmck	28/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
			8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	24 MHz < fmck	40/fмск		ns
			20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
			16 MHz < fмcк ≤ 20 MHz	28/fмск		ns
			8 MHz < fмcк ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EVDD0} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$	24 MHz < fmck	96/fмск		ns
			20 MHz < fмcк ≤ 24 MHz	72/fмск		ns
			16 MHz < fмcк ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tkh2, tkl2	$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		tkcy2/2 - 24		ns
width		2.7 V ≤ EVDD0 < 4.0 V, 2.	$3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{DD0} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		tkcy2/2 - 100		ns
SIp setup time	tsık2	$2.7 \text{ V} \le \text{EVdd0} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		1/fмск + 40		ns
(to SCKp↑) Note 2		2.4 V ≤ EVDD0 < 3.3 V, 1.	$6~V \leq V_b \leq 2.0~V$	1/fмск + 60		ns
SIp hold time (from SCKp†) Note 3	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$			2/fмcк + 240	ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k\Omega \\ \\ 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ C_{b} &= 30 \ pF, \ R_{V} = 5.5 \ k\Omega \end{split}$			2/fмск + 428	ns
					2/fмск + 1146	ns

(Notes and Remarks are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI7	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI24	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 to ANI14	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output volt- age (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	3.5625		39	μs
			$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI7		0		AVREFP	V
		Internal reference voltage output (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4		4	V
		Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

Note 4. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI7, ANI16 to ANI24, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	3.6 V ≤ V _{DD} ≤ 5.5 V	2.375		39	μs
			$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI7		0		VDD	V
		ANI16 to ANI24		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		\	V _{BGR} Note 3		V
		Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		VT	V _{TMPS25} Note 3		V

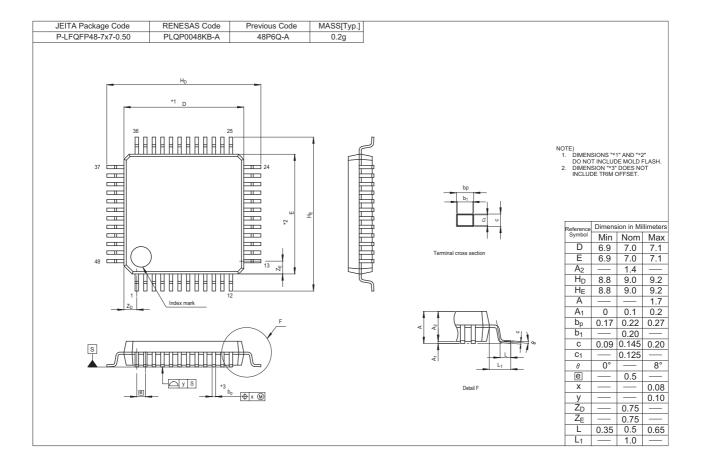
Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.


Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

3.6.6 POR circuit characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.54	V
Minimum pulse width Note 2	Tpw		300			μs

- Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

4.4 48-pin products

R5F11BGCAFB, R5F11BGEAFB, R5F11BGCGFB, R5F11BGEGFB

