

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2600
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SmartCard
Peripherals	Motor Control PWM, POR, PWM, WDT
Number of I/O	72
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2636uf20jv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Page	Revisior	n (See Mai	nual fo	r Deta	ils)				
24.1.3 DC	982	Table arr	nended							
Characteristics		ltem Symbol Min. Typ. Max. L							Test Conditions	
Table 24-2 DC		Input leakage	RES	l _{in}		_	1.0	_μA	$V_{in} = 0.5 V to$	
Characteristics	Characteristics current STBY, NMI, MD2 to MD0		STBY, NMI, MD2 to MD0		—	—	1.0		$V_{CC} - 0.5 V$	
			HRxD0, HRxD1, FWE	-	_	-	1.0			
			Ports 4, 9	-	_	_	1.0	_	$V_{in} = 0.5 \text{ V to}$ AV _{CC} - 0.5 V	
	005									
24.1.4 AC Characteristics	985	Figure ar	nended							
						5	V			
Figure 24-2 Output Load Circuit)			
Load Circuit						<	RL			
						Ĩ	> 11			
		LSI outp	ut pin 🛛 🛶	• •			,			
			C =	: \$	R _H	<u> </u>	<u> </u>			
				2	• ''		<u> </u>			
			Π	т "		7	— Т			
		C = 50 pF	: Ports 10	-						
		o						outp	ut pin setting)	
		•	: All ports	except p	ports 10) to 13,	A to F			
		R _L = 2.4 k R _H = 12 k								
			out timing m	easurei	ment le	vels				
		Low leve	-	ououroi	none io	1010				
		 High lev 								
24.2.3 DC	996	Table am	anded							
Characteristics	000	Item	ichaea	Symbol	Min.	Tun	Max.	Unit	Test Conditions	
Table 24-12 DC		Schmitt	IRQ0 to IRQ5	-	1.0	Тур.		V	rest conutions	
Characteristics		trigger input voltage		V _T ⁺	_	_	$V_{\text{CC}} \times 0.7$			
				$V_T^+ - V_T^-$	0.4					
	997	Table arr	nended							
		Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
		Input leakage	RES	I _{in}		-	1.0	μA	$V_{in} = 0.5 V to$	
		current	STBY, NMI, MD2 to MD0		_	_	1.0		$V_{CC} - 0.5 V$	
			HRxD0, HRxD1, FWE	-	_	_	1.0	_		
			Ports 4, 9	-	_	_	1.0	_	$V_{in} = 0.5 V \text{ to}$ AV _{CC} - 0.5 V	

Secti	on 15	I ² C Bus Interface [Option]	
		(Only for the H8S/2638, H8S/2639, and H8S/2630)	
15.1	Overvie	ew	
	15.1.1	Features	
	15.1.2	Block Diagram	
	15.1.3	Input/Output Pins	
	15.1.4	Register Configuration	
15.2	Registe	r Descriptions	
	15.2.1	I ² C Bus Data Register (ICDR)	
		Slave Address Register (SAR)	
	15.2.3	Second Slave Address Register (SARX)	
		I ² C Bus Mode Register (ICMR)	
		I ² C Bus Control Register (ICCR)	
		I ² C Bus Status Register (ICSR)	
	15.2.7	Serial Control Register X (SCRX)	
	15.2.8	DDC Switch Register (DDCSWR)	
	15.2.9	Module Stop Control Register B (MSTPCRB)	
15.3	Operati	on	
	15.3.1	I ² C Bus Data Format	
	15.3.2	Initial Setting	
	15.3.3	Master Transmit Operation	
	15.3.4	Master Receive Operation	
	15.3.5	Slave Receive Operation	
	15.3.6	Slave Transmit Operation	
	15.3.7	IRIC Setting Timing and SCL Control	
	15.3.8	Operation Using the DTC	
		Noise Canceler	
	15.3.10	Initialization of Internal State	
15.4	Usage I	Notes	599
~ .			
		Controller Area Network (HCAN)	
16.1		ew	
		Features	
		Block Diagram	
		Pin Configuration	
		Register Configuration	
16.2		r Descriptions	
		Master Control Register (MCR)	
		General Status Register (GSR)	
	16.2.3	Bit Configuration Register (BCR)	

Pin No.	o. Pin Name							
FP-128B	Mode 4	Mode 5	Mode 6	Mode 7				
57	PJ2/PWM2C	PJ2/PWM2C	PJ2/PWM2C	PJ2/PWM2C				
58	PJ3/PWM2D	PJ3/PWM2D	PJ3/PWM2D	PJ3/PWM2D				
59	PWMVCC	PWMVCC	PWMVCC	PWMVCC				
60	PJ4/PWM2E	PJ4/PWM2E	PJ4/PWM2E	PJ4/PWM2E				
61	PJ5/PWM2F	PJ5/PWM2F	PJ5/PWM2F	PJ5/PWM2F				
62	PJ6/PWM2G	PJ6/PWM2G	PJ6/PWM2G	PJ6/PWM2G				
63	PJ7/PWM2H	PJ7/PWM2H	PJ7/PWM2H	PJ7/PWM2H				
64	PWMVSS	PWMVSS	PWMVSS	PWMVSS				
65	P30/TxD0	P30/TxD0	P30/TxD0	P30/TxD0				
66	P31/RxD0	P31/RxD0	P31/RxD0	P31/RxD0				
67	VSS	VSS	VSS	VSS				
68	VSS	VSS	VSS	VSS				
69	P32/SCK0/SDA1 ^{*2} / IRQ4	P32/SCK0/SDA1 ^{*2} / IRQ4	P32/SCK0/SDA1 ^{*2} / IRQ4	P32/SCK0/SDA1*2/ IRQ4				
70	P33/TxD1/SCL1*2	P33/TxD1/SCL1*2	P33/TxD1/SCL1*2	P33/TxD1/SCL1*2				
71	P34/RxD1/SDA0*2	P34/RxD1/SDA0*2	P34/RxD1/SDA0*2	P34/RxD1/SDA0*2				
72	P35/SCK1/SCL0 ^{*2} / IRQ5	P35/SCK1/SCL0 ^{*2} / IRQ5	P35/SCK1/SCL0 ^{*2} / IRQ5	P35/SCK1/SCL0 ^{*2} / IRQ5				
73	RES	RES	RES	RES				
74	NMI	NMI	NMI	NMI				
75	PLLCAP	PLLCAP	PLLCAP	PLLCAP				
76	VSS	VSS	VSS	VSS				
77	PLLVSS	PLLVSS	PLLVSS	PLLVSS				
78	OSC2 ^{*1}	OSC2 ^{*1}	OSC2 ^{*1}	OSC2 ^{*1}				
79	OSC1 ^{*1}	OSC1 ^{*1}	OSC1 ^{*1}	OSC1 ^{*1}				
80	VCC	VCC	VCC	VCC				
81	VCC	VCC	VCC	VCC				
82	VCL	VCL	VCL	VCL				
83	XTAL	XTAL	XTAL	XTAL				
84	VSS	VSS	VSS	VSS				
85	EXTAL	EXTAL	EXTAL	EXTAL				
86	FWE ^{*3}	FWE ^{*3}	FWE ^{*3}	FWE ^{*3}				

4.2 Reset

4.2.1 Overview

A reset has the highest exception priority.

When the $\overline{\text{RES}}$ pin goes low, all current operations are stopped, and this LSI enters reset state. A reset initializes the internal state of the CPU and the registers of on-chip supporting modules. Immediately after a reset, interrupt control mode 0 is set.

When the $\overline{\text{RES}}$ pin goes from low to high, reset exception handling starts.

The H8S/2636 can also be reset by overflow of the watchdog timer. For details see section 12, Watchdog Timer.

4.2.2 Reset Sequence

This LSI enters reset state when the $\overline{\text{RES}}$ pin goes low.

To ensure that this LSI is reset, hold the $\overline{\text{RES}}$ pin low for at least 20 ms at power-up. To reset during operation, hold the $\overline{\text{RES}}$ pin low for at least 20 states.

When the $\overline{\text{RES}}$ pin goes high after being held low for the necessary time, this LSI starts reset exception handling as follows.

- 1. The internal state of the CPU and the registers of the on-chip supporting modules are initialized, the T bit is cleared to 0 in EXR, and the I bit is set to 1 in EXR and CCR.
- 2. The reset exception handling vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC.

Figures 4-2 and 4-3 show examples of the reset sequence.

8.2.2 DTC Mode Register B (MRB)

Bit	:	7	6	5	4	3	2	1	0
		CHNE	DISEL						
Initial va	lue:	*	*	*	*	*	*	*	*
R/W	:					_			
								*:	Undefined

MRB is an 8-bit register that controls the DTC operating mode.

Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. With chain transfer, a number of data transfers can be performed consecutively in response to a single transfer request.

In data transfer with CHNE set to 1, determination of the end of the specified number of transfers, clearing of the interrupt source flag, and clearing of DTCER is not performed.

Bit 7 CHNE Description 0 End of DTC data transfer (activation waiting state is entered) 1 DTC chain transfer (new register information is read, then data is transferred)

Bit 6—DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

Bit 6

DISEL	Description
0	After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1	After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bits 5 to 0—Reserved: These bits have no effect on DTC operation in the chip, and should always be written with 0.

8.3.9 Operation Timing

Figures 8-10 to 8-12 show an example of DTC operation timing.

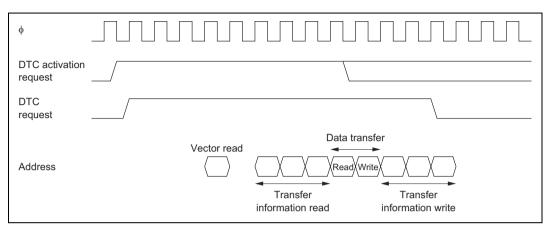


Figure 8-10 DTC Operation Timing (Example in Normal Mode or Repeat Mode)

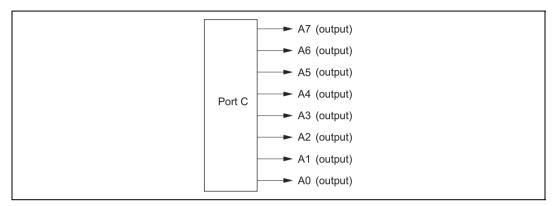


Figure 8-11 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2)

9.8.3 Pin Functions for Each Mode

Modes 4 and 5: In modes 4 and 5, port C pins function as address outputs automatically.

Figure 9-12 shows the port C pin functions.

Mode 6: In mode 6, port C pints function as address outputs or input ports and I/O can be specified in bit units. When each bit in PCDDR is set to 1, the corresponding pin functions as an address output and when the bit cleared to 0, the pin functions as an input port.

Figure 9-13 shows the port C pin functions.

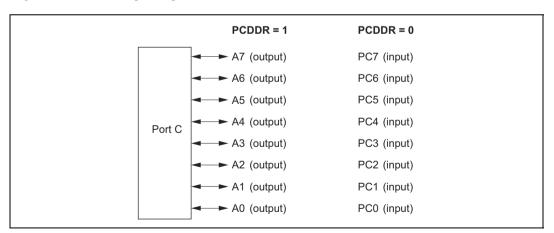


Figure 9-13 Port C Pin Functions (Mode 6)

10.2.5 Timer Status Register (TSR)

Channel 0: TSR0 Channel 3: TSR3 Bit 7 3 2 : 6 5 4 1 0 TCFV TGFD TGFC TGFB ___ ____ TGFA 1 1 Initial value : 0 0 0 0 0 0 R/W R/(W)* R/(W)* $R/(W)^*$ R/(W)* R/(W)* Note: * Can only be written with 0 for flag clearing. Channel 1: TSR1 Channel 2: TSR2 Channel 4: TSR4

Channel 5: TSR5

Bit	:	7	6	5	4	3	2	1	0
		TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA
Initial va	alue :	1	1	0	0	0	0	0	0
R/W	:	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*

Note: * Can only be written with 0 for flag clearing.

The TSR registers are 8-bit registers that indicate the status of each channel. The TPU has six TSR registers, one for each channel. The TSR registers are initialized to H'C0 by a reset, and in hardware standby mode.

• Phase counting mode 3

Figure 10-31 shows an example of phase counting mode 3 operation, and table 10-11 summarizes the TCNT up/down-count conditions.

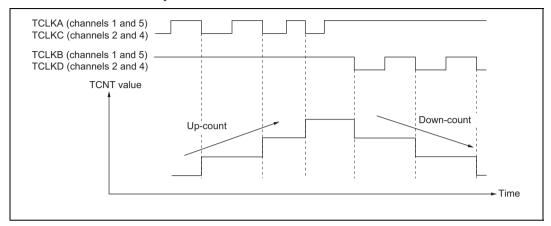


Figure 10-31 Example of Phase Counting Mode 3 Operation

Table 10-11 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Don't care
Low level	T	
	Low level	
T_	High level	Up-count
High level		Down-count
Low level		Don't care
	High level	
T	Low level	
Legend:		

Legend:

: Rising edge

: Falling edge

12.2.2 Timer Control/Status Register (TCSR)

TCSR0

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/IT	TME	_	_	CKS2	CKS1	CKS0
Initial va	lue :	0	0	0	1	1	0	0	0
R/W	:	R/(W)*	R/W	R/W	—	—	R/W	R/W	R/W

Note: * Only a 0 may be written to this bit to clear the flag.

TCSR1

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/IT	TME	PSS ^{*2}	RST/MI	CKS2	CKS1	CKS0
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*1	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Notes: 1. Only a 0 may be written to this bit to clear the flag.

2. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

TCSR is an 8-bit readable/writable^{*} register. Its functions include selecting the clock source to be input to TCNT, and the timer mode.

TCSR0 (TCSR1) is initialized to H'18 (H'00) by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: * TCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.4, Notes on Register Access.

13.2.5 Serial Mode Register (SMR)

Bit	:	7	6	5	4	3	2	1	0
		C/Ā	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SMR is an 8-bit register used to set the SCI's serial transfer format and select the baud rate generator clock source.

SMR can be read or written to by the CPU at all times.

SMR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Communication Mode (C/\overline{A}) : Selects asynchronous mode or clocked synchronous mode as the SCI operating mode.

Bit 7

C/Ā	Description	
0	Asynchronous mode	(Initial value)
1	Clocked synchronous mode	

Bit 6—Character Length (CHR): Selects 7 or 8 bits as the data length in asynchronous mode. In clocked synchronous mode, a fixed data length of 8 bits is used regardless of the CHR setting.

Bit 6

CHR	Description	
0	8-bit data	(Initial value)
1	7-bit data [*]	

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

15.3 Operation

15.3.1 I²C Bus Data Format

The I^2C bus interface has serial and I^2C bus formats.

The I^2C bus formats are addressing formats with an acknowledge bit. These are shown in figures 15-3 (a) and (b). The first frame following a start condition always consists of 8 bits.

The serial format is a non-addressing format with no acknowledge bit. Although start and stop conditions must be issued, this format can be used as a synchronous serial format. This is shown in figure 15-4.

Figure 15-5 shows the I^2C bus timing.

The symbols used in figures 15-3 to 15-5 are explained in table 15-4.

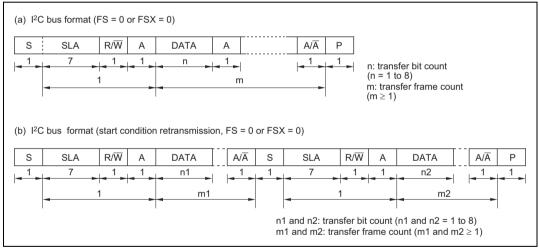


Figure 15-3 I²C Bus Data Formats (I²C Bus Formats)

16.2.18 Message Control (MC0 to MC15)

The message control register sets (MC0 to MC15) consist of eight 8-bit readable/writable registers (MCx[1] to MCx[8]). The HCAN has 16 sets of these registers (MC0 to MC15).

The initial value of these registers is undefined, so they must be initialized (by writing 0 or 1).

MCx [1]								
Bit:	7	6	5	4	3	2	1	0
	—	—	—	—	DLC3	DLC2	DLC1	DLC0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MCx [2]								
Bit:	7	6	5	4	3	2	1	0
	_	—	—	—	_	—	—	—
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MCx [3]								
Bit:	7	6	5	4	3	2	1	0
	_		_	—	_		—	
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MCx [4]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							*:(Jndefined

21A.13 Programmer Mode

In programmer mode, a PROM programmer can be used to perform programming/erasing via a socket adapter, just as for a discrete flash memory. Use a PROM programmer that supports the Renesas Electronics's 128-kbyte flash memory on-chip MCU device type (FZTAT128V5A).

21A.13.1 Socket Adapter and Memory Map

In programmer mode in which the PROM writer is used, reading from memory (verification), writing, and initializing the flash memory (erasing all of its contents) are enabled. At this time, a dedicated conversion socket adapter must be used. Table 21A-13 shows the types of the socket adapters. For programmer mode on this LSI, one of the socket adapters listed in table 21A-13 should be used.

Table 21A-13 Type of Socket Adapter

Part No.	Package Type	Socket Adapter Type	Manufacturer
HD64F2636UF	128 pin QFP	ME2636ESHF1H	Minato Electronics Inc.
HD64F2636F	(FP-128B)	HF2636Q128D4001	Data I/O Japan Corporation

The memory map of on-chip ROM is shown in figure 21A-17

	dresses in CU mode	Addresses in programmer mode				
H'0	000000	H'00000				
	On-chip ROM space (128 kbytes)					
H'0)1FFFF	H'1FFFF				

Figure 21A-17 On-Chip ROM Memory Map

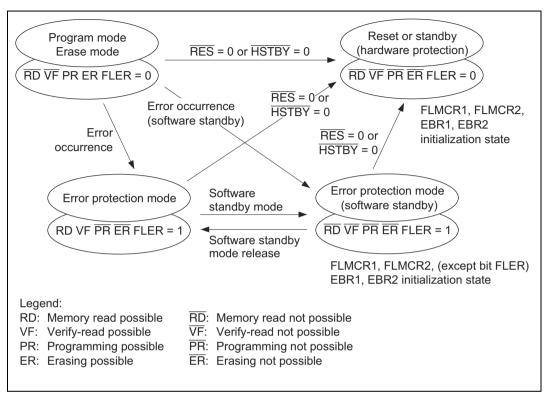


Figure 21B-14 shows the flash memory state transition diagram.

Figure 21B-14 Flash Memory State Transitions

21C.8.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The SCI channel to be used is set to asynchronous mode.

When a reset-start is executed after the H8S/2635 Group's pins have been set to boot mode, the boot program built into the H8S/2635 Group are started and the programming control program prepared in the host is serially transmitted to the H8S/2635 Group via the SCI. In the H8S/2635 Group, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 21C-7, and the boot mode execution procedure in figure 21C-8.

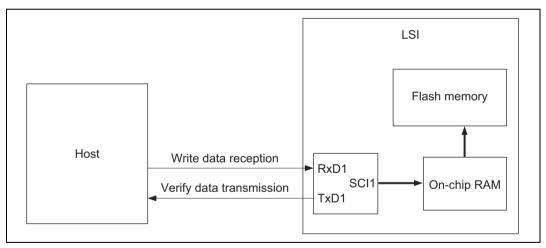


Figure 21C-7 System Configuration in Boot Mode

24.1.3 DC Characteristics

Table 24-2 lists the DC characteristics. Table 24-3 lists the permissible output currents.

Table 24-2 DC Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, PWMV_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC}, $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)^{*1*6}

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ0 to IRQ5	V _T ⁻	1.0	_	_	V	
trigger input		V_{T}^{+}	_	—	$V_{CC} \times 0.7$	_	
voltage		$V_T^+ - V_T^-$	0.4	_	_	_	
Input high voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IH}	V _{CC} – 0.7	_	V _{CC} + 0.3	V	
	EXTAL	-	$V_{\text{CC}} \times 0.7$		V _{CC} + 0.3	_	
	Ports 1, 3, F	_	2.2		$V_{CC} + 0.3$	_	
	Ports A to E	-	$V_{\text{CC}} \times 0.8$		V _{CC} + 0.3	_	
	Ports H, J	_	$PWMV_{CC} \times 0.8$	_	PWMV _{CC} + 0.3		
	HRxD0, HRxD1	_	2.2	—	V _{CC} + 0.3		
	Ports 4 and 9	_	$AV_{CC} \times 0.7$	—	AV _{CC} + 0.3	_	
Input low voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IL}	-0.3	_	0.5	V	
	EXTAL	-	-0.3		0.8	_	
	Ports 1, 3, F	-	-0.3		0.8	_	
	Ports A to E	_	-0.3		$V_{CC} \times 0.2$	_	
	Ports H, J	_	-0.3	—	PWMV _{CC} × 0.2		
	HRxD0, HRxD1	-	-0.3	—	$V_{CC} \times 0.2$	_	
	Ports 4, 9	_	-0.3		$AV_{CC} \times 0.2$		

(1) Clock Timing

Table 24-39 lists the clock timing

Table 24-39 Clock Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, PWMV_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC}, $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

		Con	dition		
		20	MHz	_	
Item	Symbol	Min.	Max.	Unit	Test Conditions
Clock cycle time	t _{cyc}	50	250	ns	Figure 24-9
Clock high pulse width	t _{CH}	15	_	ns	
Clock low pulse width	t _{CL}	15	_	ns	
Clock rise time	t _{Cr}	_	10	ns	
Clock fall time	t _{Cf}	_	10	ns	
Clock oscillator settling time at reset (crystal)	t _{OSC1}	20	—	ms	Figure 24-10
Clock oscillator settling time in software standby (crystal)	t _{OSC2}	8	—	ms	Figure 23A-3 Figure 23B-3
External clock output stabilization delay time	t _{DEXT}	2	—	ms	Figure 24-10
32-kHz clock oscillation settling time	t _{OSC3}	_	2	S	
Subclock oscillator frequency	f _{SUB}	32.768		kHz	
Subclock (ϕ_{SUB}) cycle time	t _{SUB}	30.5		μS	

24.4.6 D/A Conversion Characteristics

Table 24-45 shows the D/A conversion characteristics.

Table 24-45 D/A Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, PWMV_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC}, $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

		Conditi	on		
Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	bits	
Conversion time	_	_	10	μs	20-pF capacitive load
Absolute accuracy	_	± 1.5	± 2.0	LSB	2-M Ω resistive load
_			± 1.5	LSB	4-M Ω resistive load

TIOR0H—Timer I/O Control Reg						ter 0H		H'FF	712			TPU0	
Bit	7		7 6		5		4 3			2	1	0	
	IOB3	IC)B2	2		IOB1	IOB0	IOA:	3	IOA2	IOA1	IOA0	
Initial value	0		0			0	0 0			0	0	0	
Read/Write	R/W	F	R/W	/		R/W	R/W	R/W	/	R/W	R/W	R/W	
						ntrol ——	1						
		0	0	0	0	TGR0A is output	Output dis						
				1	0	compare register	output	Jul 13 U	0 output at compare match 1 output at compare match				
					1	register			Tog	atch			
			1	0	0]	Output dis	sabled					
					1		Initial out	out is 1	0 ou				
				1	0		output		1 output at compare match				
		1				Toggle output at compare match							
		1	0	0	0	TGR0A is			t capture at	t rising edge			
					1	input capture	source is	nin	Inpu	t capture at	falling edge		
				1	*	register	TIOCA0 pin Capture input source is channel 1/count clock		Inpu	t capture at	both edges		
			1	*	*				source is channel count-o			t capture at nt-down	TCNT1 coun
											*:	Don't care	

TGR0B I/O Control

0	0	0	0	TGR0B is	Output disabled					
			1	output	Initial output is 0	0 output at compare match				
		1	0	compare register	output	1 output at compare match				
			1			Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is 1	0 output at compare match				
		1	0		output	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR0B is	Capture input	Input capture at rising edge				
			1	input	source is TIOCB0 pin	Input capture at falling edge				
		1	*	capture register	ПОСВОріп	Input capture at both edges				
	1	*	*	-	Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down*1				

*: Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and ∳/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.