

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2600
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SmartCard
Peripherals	Motor Control PWM, POR, PWM, WDT
Number of I/O	72
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2638uf20jv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.4	Basic	Bus Interface	
	7.4.1	Overview	167
	7.4.2	Data Size and Data Alignment	167
	7.4.3	Valid Strobes	169
	7.4.4	Basic Timing	
	7.4.5	Wait Control	
7.5	Burst 1	ROM Interface	179
	7.5.1	Overview	179
	7.5.2	Basic Timing	
	7.5.3	Wait Control	
7.6	Idle C	ycle	
	7.6.1	Operation	
	7.6.2	Pin States During Idle Cycles	
7.7	Write	Data Buffer Function	
7.8	Bus A	rbitration	
	7.8.1	Overview	
	7.8.2	Operation	
	7.8.3	Bus Transfer Timing	
7.9	Resets	and the Bus Controller	
Secti	ion 8	Data Transfer Controller (DTC)	
8.1	Overv	iew	
	8.1.1	Features	
	8.1.2	Block Diagram	
	8.1.3	Register Configuration	191
8.2	Regist	er Descriptions	
	8.2.1	DTC Mode Register A (MRA)	
	8.2.2	DTC Mode Register B (MRB)	
	8.2.3	DTC Source Address Register (SAR)	
	8.2.4	DTC Destination Address Register (DAR)	
	8.2.5	DTC Transfer Count Register A (CRA)	
	8.2.6	DTC Transfer Count Register B (CRB)	
	8.2.7	DTC Enable Registers (DTCER)	
	8.2.8	DTC Vector Register (DTVECR)	
	8.2.9	Module Stop Control Register A (MSTPCRA)	
8.3	Operat	tion	
	8.3.1	Overview	
	8.3.2	Activation Sources	
	8.3.2 8.3.3	Activation Sources DTC Vector Table	

(2) Reset Exception Handling

After the $\overline{\text{RES}}$ pin has gone low and the reset state has been entered, when $\overline{\text{RES}}$ goes high again, reset exception handling starts. The CPU enters the reset state when the $\overline{\text{RES}}$ is low. When reset exception handling starts the CPU fetches a start address (vector) from the exception vector table and starts program execution from that address. All interrupts, including NMI, are disabled during reset exception handling and after it ends.

(3) Traces

Traces are enabled only in interrupt control mode 2. Trace mode is entered when the T bit of EXR is set to 1. When trace mode is established, trace exception handling starts at the end of each instruction.

At the end of a trace exception-handling sequence, the T bit of EXR is cleared to 0 and trace mode is cleared. Interrupt masks are not affected.

The T bit saved on the stack retains its value of 1, and when the RTE instruction is executed to return from the trace exception-handling routine, trace mode is entered again. Trace exception-handling is not executed at the end of the RTE instruction.

Trace mode is not entered in interrupt control mode 0, regardless of the state of the T bit.

(4) Interrupt Exception Handling and Trap Instruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer (ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU alters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start address (vector) from the exception vector table and program execution starts from that start address.

Figure 2-16 shows the stack after exception handling ends.

[10] When the specified number of transfers are completed (the TPU transfer CRA value is 0), the TGFA flag is held at 1, the DTCE bit is cleared to 0, and a TGIA interrupt request is sent to the CPU. Termination processing should be performed in the interrupt handling routine.

(3) Software Activation

An example is shown in which the DTC is used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is H'1000 and the destination address is H'2000. The vector number is H'60, so the vector address is H'04C0.

- [1] Set MRA to incrementing source address (SM1 = 1, SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt (CHNE = 0). Set the transfer source address (H'1000) in SAR, the destination address (H'2000) in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB.
- [2] Set the start address of the register information at the DTC vector address (H'04C0).
- [3] Check that the SWDTE bit in DTVECR is 0. Check that there is currently no transfer activated by software.
- [4] Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0.
- [5] Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps 3 and 4 and led to a different software activation. To activate this transfer, go back to step 3.
- [6] If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred.
- [7] After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform other wrap-up processing.

Bit 7—Count Direction Flag (TCFD): Status flag that shows the direction in which TCNT counts in channels 1, 2, 4, and 5.

In channels 0 and 3, bit 7 is reserved. It is always read as 1 and cannot be modified.

Bit 7 TCFD	Description	
0	TCNT counts down	
1	TCNT counts up	(Initial value)

Bit 6—Reserved: This bit is always read as 1 and cannot be modified.

Bit 5—Underflow Flag (TCFU): Status flag that indicates that TCNT underflow has occurred when channels 1, 2, 4, and 5 are set to phase counting mode.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5 TCFU	Description	
0	[Clearing condition]	(Initial value)
	 When 0 is written to TCFU after reading TCFU = 1 	
1	[Setting condition]	
	• When the TCNT value underflows (changes from H'0000 to H'FFFF)	

Bit 4—Overflow Flag (TCFV): Status flag that indicates that TCNT overflow has occurred.

Bit 4 TCFV	Description	
0	[Clearing condition]	(Initial value)
	 When 0 is written to TCFV after reading TCFV = 1 	
1	[Setting condition]	
	• When the TCNT value overflows (changes from H'FFFF to H'0000)	

Example of Synchronous Operation: Figure 10-15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

For details of PWM modes, see section 10.4.6, PWM Modes.

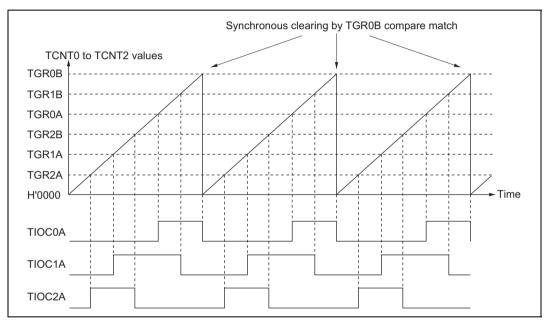


Figure 10-15 Example of Synchronous Operation

11.3.2 Output Timing

If pulse output is enabled, NDR contents are transferred to PODR and output when the specified compare match event occurs. Figure 11-3 shows the timing of these operations for the case of normal output in groups 2 and 3, triggered by compare match A.

ф	
TCNT	N <u>N+1</u>
TGRA	N
Compare match A signal	
NDRH	n
PODRH	n
PO8 to PO15	m n

Figure 11-3 Timing of Transfer and Output of NDR Contents (Example)

Bit 5—Reset Select (RSTS): Selects the type of internal reset generated if TCNT overflows during watchdog timer operation.

For details of the types of reset, see section 4, Exception Handling.

Bit 5 RSTS	Description	
0	Reset	(Initial value)
1	Do not set	

Bits 4 to 0—Reserved: Always read as 1 and cannot be modified.

12.2.4 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below.

Writing to TCNT and TCSR: These registers must be written to by a word transfer instruction. They cannot be written to with byte instructions.

Figure 12-2 shows the format of data written to TCNT and TCSR. TCNT and TCSR both have the same write address. For a write to TCNT, the upper byte of the written word must contain H'5A and the lower byte must contain the write data. For a write to TCSR, the upper byte of the written word must contain H'A5 and the lower byte must contain the write data. This transfers the write data from the lower byte to TCNT or TCSR.

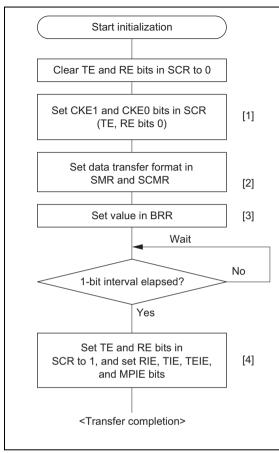
Figure 12-2 Format of Data Written to TCNT and TCSR (WDT0)

Bit 3—Multiprocessor Interrupt Enable (MPIE): Enables or disables multiprocessor interrupts. The MPIE bit setting is only valid in asynchronous mode when the MP bit in SMR is set to 1.

The MPIE bit setting is invalid in clocked synchronous mode or when the MP bit is cleared to 0.

MPIE	Description		
0	Multiprocessor interrupts disabled (normal reception performed)	(Initial value)	
	[Clearing conditions]		
	When the MPIE bit is cleared to 0		
	When MPB= 1 data is received		
1	Multiprocessor interrupts enabled*		
	Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received.		

receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.


Bit 2—Transmit End Interrupt Enable (TEIE): Enables or disables transmit end interrupt (TEI) request generation when there is no valid transmit data in TDR in MSB data transmission.

Bit 2

TEIE	Description		
0	Transmit end interrupt (TEI) request disabled st		(Initial value)
1	Transmit end interrupt (TEI) request enabled $\!\!\!\!\!\!^*$		
N		TODE (

Note: *TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or clearing the TEIE bit to 0.

Figure 13-4 shows a sample SCI initialization flowchart.

 Set the clock selection in SCR. Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE, to 0.

When the clock is selected in asynchronous mode, it is output immediately after SCR settings are made.

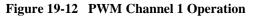
- [2] Set the data transfer format in SMR and SCMR.
- [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used.
- [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to 1. Also set the RIE, TIE, TEIE, and MPIE bits.

Setting the TE and RE bits enables the TxD and RxD pins to be used.

Figure 13-4 Sample SCI Initialization Flowchart

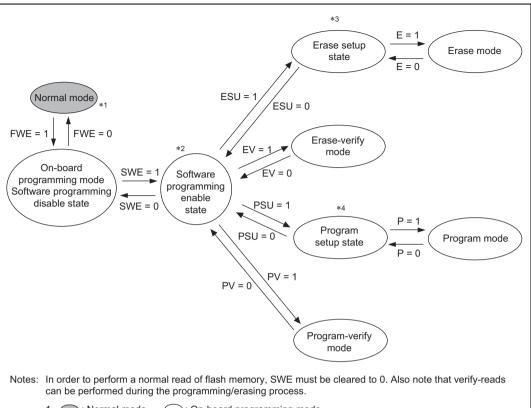
19.5 Usage Note

Contention between Buffer Register Write and Compare Match


If a PWBFR write is performed in the state immediately after a cycle register compare match, the PWM output does not change, but as the duty register is also rewritten at the same time as the buffer register, normal PWM output will not be achieved.

If a PWBFR write is performed in the state immediately after a cycle register compare match, the buffer register and duty register are overwritten. PWM output changed by the cycle register compare match is not changed in the overwrite of the duty register due to contention. This may result in unanticipated duty output. In the case of channel 2, the duty register used as the transfer destination is selected by the TDS bit of the buffer register when an overwrite of the duty register occurs due to contention. This can also result in an unintended overwrite of the duty register.

Buffer register rewriting must be completed before automatic transfer by the DTC^{*} (data transfer controller), exception handling due to a compare match interrupt, or the occurrence of a cycle register compare match on detection of the rise of CMF (compare match flag) in PWCR.


Τw T_2 Tw φ Address Buffer register address Write signal Compare match PWCNT 0 (lower 10 bits) PWBFR Ν Μ PWDTR Ν Μ PWM output CMF

Note: * The DTC is not implemented in the H8S/2635 and H8S/2634.

Wait time:	Program- ming/ erasing Wait time: possible 100 μs
φ	Min. 0 μs
v _{cc}	
FWE	
MD2 to MD0*1	
RESSWE set	
SWE bit	SWE cleared
Period during which flash memory access is proh (x: Wait time after setting SWE bit)*2	ibited
Period during which flash memory can be program (Execution of program in flash memory prohibited prohibited)	
 Notes: 1. Except when switching modes, the level of a off by pulling the pins up or down. 2. See section 24.1.7, Flash Memory Character 3. Mode programming setup time t_{MDS} (min.) = 	eristics.

Figure 21A-19 Power-On/Off Timing (User Program Mode)

- 1. : Normal mode : On-board programming mode
- Do not make a state transition by setting or clearing multiple bits simultaneously.
 After a transition from erase mode to the erase setup state, do not enter erase mode without passing through the software programming enable state.
- After a transition from program mode to the program setup state, do not enter program mode without passing through the software programming enable state.

Figure 21C-11 FLMCR1 Bit Settings and State Transitions

Table 24-14 Bus Drive Characteristics [Option]*

 $\begin{array}{ll} \text{Conditions:} & V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{PWMV}_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{AV}_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \\ & V_{ref} = 4.5 \text{ V to } \text{AV}_{CC}, \text{V}_{SS} = \text{PWMV}_{SS} = \text{PLLV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ } \text{T}_{a} = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \\ & (\text{regular specifications}), \text{ } \text{T}_{a} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (wide-range specifications)} \end{array}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input	V _T ⁻	1.0	—	_	V	
voltage	V _T ⁺	_	_	$V_{CC} \times 0.7$	_	
	$V_{T}^{+}-V_{T}^{-}$	0.4	_	_	_	V_{CC} = 4.5 V to 5.5 V
Input high voltage	V _{IH}	$V_{\text{CC}} \times 0.7$		V _{CC} + 0.5	V	
Input low voltage	VIL	- 0.5		$V_{\text{CC}} \times 0.3$	V	
Output low voltage	V _{OL}	—		0.7	V	$I_{OL} = 8 \text{ mA},$ $V_{CC} = 4.5 \text{ V to 5.5 V}$
		_		0.4		$I_{OL} = 3 \text{ mA},$ $V_{CC} = 4.5 \text{ V to 5.5 V}$
		_		0.4		I_{OL} = 1.6 mA, V _{CC} = 3.3 V to 5.5 V
Input capacitance	Cin	—	—	20	pF	$V_{in} = 0 V, f = 1 MHz,$ $T_a = 25 \ ^{\circ}C$
Three-state leakage current (off state)	I _{TSI}	—		1.0	μA	$V_{in} = 0.5 \text{ V to } V_{CC}$ - 5.5 V
SCL, SDA, output fall time	t _{of}	20 + 0.1Cb	_	250	ns	

Applicable Pins: SCL1-0, SDA1-0

Note: * Available when using I²C bus interface (the W-mask version only).

24.3.5 A/D Conversion Characteristics

Table 24-32 lists the A/D conversion characteristics.

Table 24-32 A/D Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, PWMV_{CC} = 4.5 V to 5.5 V, AV_{CC} = 4.5 V to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC}, $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

		Conditi	on	
Item	Min.	Тур.	Max.	Unit
Resolution	10	10	10	bits
Conversion time	10	_	_	μs
Analog input capacitance		_	20	pF
Permissible signal-source impedance	_	—	5	kΩ
Nonlinearity error	_	—	±3.5	LSB
Offset error		—	±3.5	LSB
Full-scale error	_	—	±3.5	LSB
Quantization	_	±0.5	_	LSB
Absolute accuracy	_	—	±4.0	LSB

Instruc-									Instructio	Instruction Format				
	Mnemonic	Size	1st	1st byte	2nd byte	oyte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
	ROTR.B Rd	ш	-	з	∞	Þ								
	ROTR.B #2, Rd	ш	-	3	υ	p								
	ROTR.W Rd	≥	-	3	6	Þ								
	ROTR.W #2, Rd	8	-	3	۵	Þ								
	ROTR.L ERd	_	-	3	В	0 erd								
	ROTR.L #2, ERd	_	-	3	ш	0 erd								
ROTXL	ROTXL.B Rd	ш	-	2	0	Þ								
	ROTXL.B #2, Rd	ш	-	2	4	Þ								
	ROTXL.W Rd	≥	-	2	-	Þ								
	ROTXL.W #2, Rd	≥	-	2	2	p								
	ROTXL.L ERd	_	-	2	ę	0 erd								
	ROTXL.L #2, ERd	_	-	2	7	0 erd								
ROTXR	ROTXR.B Rd	В	-	3	0	Þ								
	ROTXR.B #2, Rd	В	٢	3	4	p								
	ROTXR.W Rd	8	-	3	-	p								
	ROTXR.W #2, Rd	≥	-	з	2	p								
	ROTXR.L ERd	_	-	3	ę	0 erd								
	ROTXR.L #2, ERd	_	-	3	7	0 erd								
	RTE		5	9	7	0								
	RTS		5	4	7	0								
	SHAL.B Rd	ш	-	0	∞	p								
	SHAL.B #2, Rd	۵	-	0	υ	Þ								
	SHAL.W Rd	≥	-	0	6	Þ								
	SHAL.W #2, Rd	8	۲	0	۵	p								
	SHAL.L ERd	_	-	0	m	0 erd								
	SHAL.L #2, ERd	_	-	0	ш	0 erd								

Page 1094 of 1458

6																																					
8																																					
7																																					
9																															R:W NEXT	R:W NEXT					
5			R:W:M NEXT					R:W:M NEXT					R:W:M NEXT																		W:B EAd*2	W:B EAd*2	n times ^{*2} \rightarrow				
4		R:W:M NEXT	R:B EA				R:W:M NEXT	R:B EA				R:W:M NEXT	R:B EA														on, 11 states	on, 19 states			R:B EAs*2	R:B EAs ^{*2}	← Repeated n times ^{*2}				
3	R:W:M NEXT		R:W 4th		R:W:M NEXT	R:W:M NEXT	R:B EA	R:W 4th		R:W:M NEXT	R:W:M NEXT	R:B EA	R:W 4th							R:W NEXT							Internal operation, 11 states	Internal operation, 19 states	on, 11 states	on, 19 states	R:B EAd ^{*1}	R:B EAd ^{*1}					
2		R:W 3rd	R:W 3rd			R:B EA	R:W 3rd	R:W 3rd		R:B EA	R:B EA	R:W 3rd	R:W 3rd	Internal operation,	1 state			R:W NEXT		R:W 3rd							R:W NEXT	R:W NEXT	Internal operation, 11 states	Internal operation, 19 states	R:B EAs*1	R:B EAs*1					
1	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT		R:W NEXT	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT
Instruction	BTST #xx:3,@aa:8	BTST #xx:3,@aa:16	BTST #xx:3,@aa:32	BTST Rn,Rd	BTST Rn,@ERd	BTST Rn,@aa:8	BTST Rn,@aa:16	BTST Rn,@aa:32	BXOR #xx:3,Rd	BXOR #xx:3,@ERd	BXOR #xx:3,@aa:8	BXOR #xx:3,@aa:16	BXOR #xx:3,@aa:32	CLRMAC		CMP.B #xx:8,Rd	CMP.B Rs,Rd	CMP.W #xx:16,Rd	CMP.W Rs,Rd	CMP.L #xx:32,ERd	CMP.L ERS, ERd	DAA Rd	DAS Rd	DEC.B Rd	DEC.W #1/2,Rd	DEC.L #1/2,ERd	DIVXS.B Rs,Rd	DIVXS.W Rs, ERd	DIVXU.B Rs,Rd	DIVXU.W Rs, ERd	EEPMOV.B	EEPMOV.W	EXTS.W Rd	EXTS.L ERd	EXTU.W Rd	EXTU.L ERd	INC.B Rd

Page 1122 of 1458

A.6 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used in the table is defined below.

m = (31 for longword operands
ł	15 for word operands
l	7 for byte operands
Si	The i-th bit of the source operand
Di	The i-th bit of the destination operand
Ri	The i-th bit of the result
Dn	The specified bit in the destination operand
_	Not affected
\updownarrow	Modified according to the result of the instruction (see definition)
0	Always cleared to 0
1	Always set to 1
*	Undetermined (no guaranteed value)
Z'	Z flag before instruction execution
C'	C flag before instruction execution

MC10[7]								
Bit	7	6	5	4	3	2	1	0
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MC10[8]		nded Iden he identifi		ed identifie	er) of data	frames an	id remote	frames
Bit	7	6	5	4	3	2	1	0
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		nded Iden		od idoptifi) of data	frames an	d romoto	framas

Set the identifier (extended identifier) of data frames and remote frames

MC0[7]								
Bit	7	6	5	4	3	2	1	0
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MC0[8]	_/	nded Iden he identifi		ed identifie	er) of data	frames an	id remote	frames
Bit	7	6	5	4	3	2	1	0
Dit		-	-	-	-	EXD_ID10		EXD_ID8
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		nded Iden he identifi		ed identifie	er) of data	frames an	id remote	frames

S

SYSCR—Syste	em Contro	l Registe	er		H'FDE5	5		System
Bit	7	6	5	4	3	2	1	0
	MACS	_	INTM1	INTM0	NMIEG			RAME
Initial value	0	0	0	0	0	0	0	1
Read/Write	R/W		R/W	R/W	R/W	_		R/W
					RA	M Enable		
					0	On-chip	RAM is dis	sabled
					1	On-chip	RAM is en	abled
		N	MI Edge Se	elect —				
		(uested at t	he falling	edge of N	MI input
		1	An interr	upt is req	uested at t	he rising e	edge of NM	/II input
	Interru	pt Contro	ol Mode 1 a	ind 0				
	INTM	1 INTM0	Interrup Control Mo			Descript	ion	
	0	0	0	Con	trol of inter	rupts by I	bit	
		1		Sett	ng prohibi	ted		
	1	0	2	Con	trol of inter	rupts by I2	2 to I0 bits	and IPR
		1	—	Sett	ng prohibi	ted		

MAC Saturation

	Non-saturating calculation for MAC instruction
1	Saturating calculation for MAC instruction