

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c712-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

NOTES:

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

FIGURE 2-5: OPTION_REG REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit			
bit7							bit0	W = Writable bit			
								read as '0'			
								- n = Value at POR Reset			
bit 7:	RBPU: PO	RTB Pull-	up Enabl	e bit							
	1 = PORTB pull-ups are disabled										
		s puil-ups	are enac	nea by Ina	ividual port	latch valu	es				
bit 6:	INTEDG: In	nterrupt E	dge Sele		nin						
	1 = Interruption = 0 = Interruption	pt on fallin	ig edge of	f RB0/INT	pin						
bit 5:	TOCS: TM	R0 Clock \$	Source S	elect bit							
	1 = Transit	ion on RA	4/T0CKI	pin							
	0 = Interna	I instruction	on cycle o	clock (CLK	(OUT)						
bit 4:	TOSE: TMF	R0 Source	e Edge Se	elect bit							
	1 = Increm	ent on hig	h-to-low	transition	on RA4/T00	CKI pin					
h:+ 0.			v-to-nign								
DIT 3:	1 = Presca	ler is assi	aned to t	he WDT							
	0 = Presca	ler is assi	gned to t	he Timer0	module						
bit 2-0:	PS2:PS0 :	Prescaler	Rate Sel	ect bits							
	Bit Value	TMR0 Ra	ate WD1	Rate							
	000	1:2	1:	1							
	001	1:4	1:	2							
	010	1:8	1:	4 8							
	100	1:32	1:	16							
	101	1:64	1:	32							
	110 111	1:128	B 1:	64 128							
		1.200	5 1								

2.2.2.4 PIE1 Register

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 2-7: PIE1 REGISTER (ADDRESS 8Ch)

	5444			-	-		-					
0-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	ADIE	—	—	—	CCP1IE	TMR2IE	TMR1IE	R	= Readable bit			
bit7							bit0	W	= Writable bit			
								0	read as '0'			
								-n	= Value at POR Reset			
bit 7:	Unimplemented: Read as '0'											
bit 6:	ADIE: A/D Converter Interrupt Enable bit											
	1 = Enabl	es the A/E) interrupt									
	0 = Disab	les the A/	D interrup	t								
bit 5-3:	Unimpler	nented: R	lead as '0	,								
bit 2:	CCP1IE:	CCP1 Inte	errupt Ena	ble bit								
	1 = Enabl	es the CC	P1 interru	ıpt								
	0 = Disab	les the CO	CP1 interro	upt								
bit 1:	TMR2IE:	TMR2 to F	PR2 Match	n Interrupt	Enable bit							
	1 = Enabl	es the TN	IR2 to PR	2 match in	terrupt							
	0 = Disab	les the TN	/IR2 to PR	2 match ir	nterrupt							
bit 0:	TMR1IE:	TMR1 Ov	erflow Inte	errupt Enal	ble bit							
	1 = Enabl	es the TM	IR1 overflo	ow interrup	ot							
	0 = Disab	ies the TN	IKI OVerfi	ow interru	pt							

Name	Bit#	Buffer	Function			
RA0/AN0	bit 0	TTL	Input/output or analog input			
RA1/AN1	bit 1	TTL	Input/output or analog input			
RA2/AN2	bit 2	TTL	Input/output or analog input			
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF			
			Input/output or external clock input for Timer0			
RA4/T0CKI	bit 4	ST	Output is open drain type			

TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	—		_(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
85h	TRISA	_	_	_(1)	PORT	A Data	Direction	Register	11 1111	11 1111	
9Fh	ADCON1	—					PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Reserved bits; Do Not Use.

4.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution).

Note: To avoid an unintended device Reset, a specific instruction sequence (shown in the PIC[®] Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

4.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Sleep since the timer is shut off during Sleep.

TABLE 4-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
01h	TMR0	Timer0	Module's F	Register						xxxx xxxx	uuuu uuuu
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	(1)	Bit 4	PORTA	Data Dire	ection Re	gister	11 1111	11 1111

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by Timer0. **Note 1:** Reserved bit; Do Not Use.

NOTES:

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE(S)

Each CCP (Capture/Compare/PWM) module contains a 16-bit register, which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h)

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' -n = Value at POR Reset bit 7-6: Unimplemented: Read as '0' bit 5-4: DC1B1:DC1B0: PWM Least Significant bits Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L. bit 3-0: CCP1M3:CCP1M0: CCP1 Mode Select bits 0000 = Capture/Compare/PWM off (resets CCP1 module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCP1IF bit is set) 1001 = Compare mode, clear output on match (CCP1IF bit is set) 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) 1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)) 11xx = PWM mode

FIGURE 7-2: TRISCCP REGISTER (ADDRESS 87H)

Additional information on the CCP module is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

TABLE 7-1:CCP MODE – TIMER
RESOURCE

Timer Resource								
Timer1								
Timer1								
Timer2								

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISCCP<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
07h	DATACCP		—		—	—	DCCP		DT1CK	xxxx xxxx	xxxx xuxu
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	—	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
11h	TMR2	Timer2 Mo	dule's Regis	ter						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	ompare/PWI	V Register 1	(LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PWI	VI Register 1	(MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
87h	TRISCCP	—	—	—	—	—	TCCP	_	TT1CK	xxxx x1x1	xxxx x1x1
8Ch	PIE1	—	ADIE	_	—	—	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
92h	PR2	Timer2 Mo	dule's Perio	d Register						1111 1111	1111 1111

TABLE 7-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, — = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

8.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has four inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator. Additional information on the A/D module is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 8-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 8-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0									
ADCS1 bit7	ADCS0 CHS2 CHS1 CHS0 GO/DONE — ADON R = Readable bit bit0 bit0 U = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR Reset									
bit 7-6:	bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRc (clock derived from the internal ADC RC oscillator)									
bit 5-3:	3: CHS2:CHS0 : Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 1xx = reserved, do not use									
bit 2:	GO/DONE: A/D Conversion Status bit									
	$\frac{\text{If ADON} = 1}{1 = A/D \text{ conversion in progress (setting this bit starts the A/D conversion)}$ 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)									
bit 1:	Unimplemented: Read as '0'									
bit 0:	ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shutoff and consumes no operating current									

FIGURE 8-1: ADCON0 REGISTER (ADDRESS 1Fh)

FIGURE 8-2: ADCON1 REGISTER (ADDRESS 9Fh)

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	0x 0000	xx xxxx	xu uuuu
PORTB ⁽⁵⁾	xxxx xxxx	uuuu uuuu	uuuu uuuu
DATACCP	x-x	u-u	u-u
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 -00x	0000 -00u	uuuu -uuu (1)
	0000	0000	uuuu (1)
PIRI	-0 0000	-0 0000	-u uuuu (1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	นนนน นนนน
T2CON	-000 0000	-000 0000	-uuu uuuu
CCPR1L	xxxx xxxx	นนนน นนนน	นนนน นนนน
CCPR1H	xxxx xxxx	uuuu uuuu	นนนน นนนน
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	xxxx xxxx	นนนน นนนน	นนนน นนนน
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	1111 1111	1111 1111	นนนน นนนน
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISCCP	xxxx x1x1	xxxx x1x1	xxxx xuxu
PIF1	0000	0000	uuuu
	-0 0000	-0 0000	-u uuuu
PCON	0q	uq	uq
PR2	1111 1111	1111 1111	1111 1111
ADCON1	000	000	uuu

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16C712/716

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for Reset value for specific condition.

4: On any device Reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

9.16 In-Circuit Serial Programming™

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details on serial programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide, (DS30277).

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
- PICSTART[®] Plus Development Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

12.1 DC Characteristics: PIC16C712/716-04 (Commercial, Industrial, Extended) PIC16C712/716-20 (Commercial, Industrial, Extended)

			Standard Operating Conditions (unless otherwise stated)						
DC CHA	RACTER	ISTICS	Operating	g tempe	rature	0°	$C \leq TA \leq +70^{\circ}C$ for commercial		
						-40°	$C \leq IA \leq +85^{\circ}C$ for industrial		
						-40			
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage	4.0	—	5.5	V	XT, RC and LP osc mode		
D001A			4.5	_	5.5	V	HS osc mode		
			VBOR*	—	5.5	V	BOR enabled ⁽⁷⁾		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	_	V			
D003	VPOR	VDD Start Voltage to ensure inter- nal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details		
D004*	SVDD	VDD Rise Rate to ensure internal	0.05	—	_	V/ms	PWRT enabled (PWRTE bit clear)		
D004A*		Power-on Reset signal	TBD		—		PWRT disabled (PWRTE bit set)		
D005	VBOR	Brown-out Reset voltage trip point	3.65	_	4.35	V	BODEN bit set		
D010	IDD	Supply Current ^(2,5)	_	0.8	2.5	mA	Fosc = 4 MHz, VDD = 4.0V		
D013			—	4.0	8.0	mA	Fosc = 20 MHz, VDD = 4.0V		
D020	IPD	Power-down Current ^(3,5)		10.5	42	μΑ	VDD = 4.0V, WDT enabled,-40°C to +85°C		
			—	1.5	16	μA	VDD = $4.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$		
D021			_	1.5	19	μA	$VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		
D021B			—	2.5	19	μA	VDD = 4.0V, WDT disabled,-40°C to +125°C		
		Module Differential Current ⁽⁶⁾							
D022*	ΔIWDT	Watchdog Timer	—	6.0	20	μA	WDTE bit set, VDD = 4.0V		
D022A*	ΔIBOR	Brown-out Reset	_	IBD	200	μA	BODEN bit set, VDD = 5.0V		
1A	Fosc	LP Oscillator Operating Frequency	0		200	KHz	All temperatures		
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.

4: For RC Osc mode, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to this trip point.

12.4 AC (Timing) Characteristics

12.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1.	TppS2ppS
----	----------

2. TppS

Т					
F	Frequency	Т	Time		
Lowerc	Lowercase letters (pp) and their meanings:				
рр					
сс	CCP1	OSC	OSC1		
ck	CLKOUT	rd	RD		
CS	CS	rw	RD or WR		
di	SDI	SC	SCK		
do	SDO	SS	SS		
dt	Data in	tO	TOCKI		
io	I/O port	t1	T1CKI		
mc	MCLR	wr	WR		
Uppercase letters and their meanings:					
S					
F	Fall	Р	Period		
Н	High	R	Rise		
I	Invalid (High-impedance)	V	Valid		
L	Low	Z	High-impedance		

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description	
A	2/99	This is a new data sheet. How- ever, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16C6X Data Sheet</i> , DS30234, and the <i>PIC16C7X</i> <i>Data Sheet</i> , DS30390.	
В	9/05	Removed Preliminary Status.	
С	1/13	Added a note to each package outline drawing.	

APPENDIX B: CONVERSION CONSIDERATIONS

There are no previous versions of this device.

APPENDIX C: MIGRATION FROM BASE-LINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION_REG and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different Reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from Sleep through interrupt is added.

- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight-bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON STATUS register is added with a Poweron Reset Status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by Configuration Word bit BODEN. Brown-out Reset ensures the device is placed in a Reset condition if VDD dips below a fixed setpoint.

To convert code written for PIC16C5X to PIC16CXXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change Reset vector to 0000h.

TMR1L Register 11, 31		
Plack Diagram 26		
Postscaler, See Postscaler, Timer2		
PR2 Register		
Prescaler. See Prescaler, Timer2		
T2CON Register 11, 36		
TMR2 Register 11, 36		
TMR2 to PR2 Match Enable (TMR2IE Bit) 16		
TMR2 to PR2 Match Flag (TMR2IF Bit)		
TMR2 to PR2 Match Interrupt 36, 37, 42		
Timing Diagrams		
Time-out Sequence on Power-up60		
Wake-up from Sleep via Interrupt65		
Timing Diagrams and Specifications		
A/D Conversion		
Brown-out Reset (BOR) 83		
Capture/Compare/PWM (CCP) 85		
CLKOUT and I/O82		
External Clock81		
Oscillator Start-up Timer (OST) 83		
Power-up Timer (PWRT) 83		
Reset		
Timer0 and Timer1 84		
Watchdog Timer (WDT) 83		

W

W Register
Wake-up from Sleep 51
Wake-up from Sleep 64
Interrupts 58, 59
MCLR Reset 59
Timing Diagram 65
WDT Reset
Watchdog Timer (WDT) 51, 63
Block Diagram 63
Enable (WDTE Bit) 52, 63
Postscaler. See Postscaler, WDT
Programming Considerations 63
RC Oscillator 63
Time-out Period 63
Timing Diagram 83
WDT Reset, Normal Operation 54, 58, 59
WDT Reset, Sleep 54, 58, 59
WWW Address 101
WWW, On-Line Support 3

PIC16C712/716 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device Fi	<u>-XX X (XX XXX</u> requency Temperature Package Pattern Range Range	Examples: a) PIC16C716 – 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.	
Device:	PIC16C712 ⁽¹⁾ , PIC16C712T ⁽²⁾ ;VDD range 4.0V to 5.5V PIC16LC712 ⁽¹⁾ , PIC16LC712T ⁽²⁾ ;VDD range 2.5V to 5.5V PIC16C716 ⁽¹⁾ , PIC16C716T ⁽²⁾ ;VDD range 4.0V to 5.5V PIC16LC716 ⁽¹⁾ , PIC16LC716T ⁽²⁾ ;VDD range 2.5V to 5.5V	 b) PIC16LC712 - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits. c) PIC16C712 - 20I/P = Industrial temp., PDIP package, 20MHz, normal VDD limits. 	
Frequency Range:	04 = 4 MHz 20 = 20 MHz	Note 1: C = CMOS LC = Low Power CMOS 2: T = in tape and reel – SOIC, SSOP packages only	
Temperature Range:	blank = 0°C to 70°C (Commercial) I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	 LC extended temperature device is not offered. LC is not offered at 20 MHz 	
Package:	JW = Windowed CERDIP SO = SOIC P = PDIP SS = SSOP		
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

NOTES: