

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c712-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	PIC16C712/716		Pin	Buffer	
Name	DIP, SOIC	SSOP	Туре	Туре	Description
MCLR/VPP MCLR	4	4	I	ST	Master clear (Reset) input. This pin is an active low Reset to the device.
Vpp			Р		Programming voltage input
OSC1/CLKIN OSC1	16	18	I	ST	Oscillator crystal input or external clock source input. ST buffer when config-
CLKIN			I	CMOS	External clock source input.
OSC2/CLKOUT OSC2	15	17	О	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator
CLKOUT			Ο	_	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	17	19	I/O I	TTL Analog	Digital I/O Analog input 0
RA1/AN1 RA1 AN1	18	20	I/O I	TTL Analog	Digital I/O Analog input 1
RA2/AN2 RA2 AN2	1	1	I/O I	TTL Analog	Digital I/O Analog input 2
RA3/AN3/VREF RA3 AN3 VREF	2	2	I/O I I	TTL Analog Analog	Digital I/O Analog input 3 A/D Reference Voltage input.
RA4/T0CKI RA4	3	3	I/O	ST/OD	Digital I/O. Open drain when configured
тоскі			I	ST	Timer0 external clock input

TABLE 1-1: PIC16C712/716 PINOUT DESCRIPTION

 Legend:
 TTL = TTL-compatible input
 CMOS = CMOS compatible input or output

 ST = Schmitt Trigger input with CMOS levels
 OD = Open drain output

 SM = SMBus compatible input. An external resistor is required if this pin is used as an output

 NPU = N-channel pull-up
 PU = Weak internal pull-up

 No-P diode = No P-diode to VDD
 AN = Analog input or output

 I = input
 O = output

 P = Power
 L = LCD Driver

Pin	PIC16C	712/716	Pin	Buffer	
Name	DIP, SOIC	SSOP	Туре	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT RB0 INT	6	7	I/O I	TTL ST	Digital I/O External Interrupt
RB1/T1OSO/T1CKI RB1	7	8			
T10SO			I/O O	TTL	Digital I/O Timer1 oscillator output. Connects to
IICKI			I	ST	crystal in oscillator mode. Timer1 external clock input.
RB2/T1OSI RB2 T1OSI	8	9	I/O I	TTL —	Digital I/O Timer1 oscillator input. Connects to crystal in oscillator mode.
RB3/CCP1 RB3 CCP1	9	10	I/O I/O	TTL ST	Digital I/O Capture1 input, Compare1 output, PWM1 output.
RB4	10	12	I/O	TTL	Digital I/O Interrupt on change pin.
RB5	11	12	I/O	TTL	Digital I/O Interrupt on change pin.
RB6	12	13	I/O	TTL	Digital I/O Interrupt on change pin.
RB7	13	14	I I/O	ST TTL	ICSP programming clock. Digital I/O
			I/O	ST	Interrupt on change pin. ICSP programming data.
Vss	5	5, 6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15, 16	Р	—	Positive supply for logic and I/O pins.

TABLE 1-1:	PIC16C712/716 PINOUT DESCRIPTION (C	CONTINUED)
		/011111060/

Legend: TTL = TTL-compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

OD = Open drain output

SM = SMBus compatible input. An external resistor is required if this pin is used as an output

NPU = N-channel pull-up PU = Weak internal pull-up

No-P diode = No P-diode to VDD AN = Analog input or output

I = input O = output

P = Power L = LCD Driver

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is give in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.

TABLE 2-1. SPECIAL FUNCTION REGISTER SUMMARY	TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY
--	------------	-----------------------------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets (4)
Bank 0											
00h	INDF ⁽¹⁾	Addressing	this location	uses conten	ts of FSR to ac	ldress data r	nemory (not	a physical re	gister)	0000 0000	0000 0000
01h	TMR0	Timer0 Mod	lule's Registe	er						xxxx xxxx	uuuu uuuu
02h	PCL ⁽¹⁾	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	rr01 1xxx	rr0q quuu
04h	FSR ⁽¹⁾	Indirect Dat	a Memory Ad	dress Pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA ^(5,6)	—	_	(7)	PORTA Data	Latch when	written: POR	TA pins whe	n read	xx xxxx	xu uuuu
06h	PORTB ^(5,6)	PORTB Dat	ta Latch whe	n written: PC	RTB pins whe	n read				xxxx xxxx	uuuu uuuu
07h	DATACCP	(7)	(7)	(7)	(7)	(7)	DCCP	(7)	DT1CK	xxxx xxxx	xxxx xuxu
08h-09h	_	Unimpleme	Unimplemented					-	-		
0Ah	PCLATH ^(1,2)	—	—	_	Write Buffer fo	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	_	—	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimplemented					-	-			
0Eh	TMR1L	Holding Re	olding Register for the Least Significant Byte of the 16-bit TMR1 Register						xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	Holding Re	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register					xxxx xxxx	uuuu uuuu		
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 Mod	Timer2 Module's Register						0000 0000	0000 0000	
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h-14h											
15h	CCPR1L	Capture/Compare/PWM Register1 (LSB)						xxxx xxxx	uuuu uuuu		
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (N	/ISB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	—	Unimpleme	nted							-	-
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, --- = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved. Always maintain these bits clear.

5: On any device Reset, these pins are configured as inputs.

6: This is the value that will be in the port output latch.

7: Reserved bits; Do Not Use.

2.3 PCL and PCLATH

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.

2.3.1 STACK

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2.4 Program Memory Paging

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper bit of the address is provided by PCLATH<3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bit is programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions (which POPs the address from the stack).

4.0 **TIMER0 MODULE**

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- · Internal or external clock select
- Edge select for external clock
- 8-bit software programmable prescaler
- · Interrupt on overflow from FFh to 00h

Figure 4-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

4.1 **Timer0** Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment on every rising or falling edge of pin RA4/ T0CKI. The incrementing edge is determined by the Edge Select Timer0 Source bit TOSE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

Additional information on external clock requirements is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

4.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer and vice-versa.

The prescaler is not readable or writable.

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 4-1: TIMER0 BLOCK DIAGRAM

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- · Readable and writable (Both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

5.1 Timer1 Operation

Timer1 can operate in one of these modes:

- · As a timer
- · As a synchronous counter
- · As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB2/T1OSI and RB1/T1OSO/T1CKI pins become inputs. That is, the TRISB<2:1> value is ignored.

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP module (see Section 7.0 "Capture/Compare/PWM (CCP) Module(s)").

FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE(S)

Each CCP (Capture/Compare/PWM) module contains a 16-bit register, which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h)

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' -n = Value at POR Reset bit 7-6: Unimplemented: Read as '0' bit 5-4: DC1B1:DC1B0: PWM Least Significant bits Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L. bit 3-0: CCP1M3:CCP1M0: CCP1 Mode Select bits 0000 = Capture/Compare/PWM off (resets CCP1 module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCP1IF bit is set) 1001 = Compare mode, clear output on match (CCP1IF bit is set) 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) 1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)) 11xx = PWM mode

FIGURE 7-2: TRISCCP REGISTER (ADDRESS 87H)

Additional information on the CCP module is available in the PIC[®] Mid-Range Reference Manual, (DS33023).

TABLE 7-1:CCP MODE – TIMER
RESOURCE

Timer Resource
Timer1
Timer1
Timer2

7.4 CCP1 Module and PORTB Operation

When the CCP module is disabled, PORTB<3> operates as a normal I/O pin. When the CCP module is enabled, PORTB<3> operation is affected. Multiplexing details of the CCP1 module are shown on PORTB<3>, refer to Figure 3.6.

Table 7-5 below shows the effects of the CCP module operation on PORTB<3>

CCP1 Module Mode	Control Bits	CCP1 Module Operation	PORTB<3> Operation
Off	CCP1CON =xx 0000	Off	PORTB<3> functions as normal I/O.
Capture	CCP1CON =xx 01xx TRISCCP =1-x	The CCP1 module will capture an event on the RB3/CCP1 pin which is driven by an external circuit. The DCCP bit can read the signal on the RB3/CCP1 pin.	PORTB<3> always reads '0' when configured as input. If PORTB<3> is configured as output, reading PORTB<3> will read the data latch.
	CCP1CON =xx 01xx TRISCCP =0-x	The CCP1 module will capture an event on the RB3/CCP1 pin which is driven by the DCCP bit. The DCCP bit can read the signal on the RB3/CCP1 pin.	Writing to PORTB<3> will always store the result in the data latch, but it does not drive the RB3/CCP1 pin.
Compare	CCP1CON =xx 10xx TRISCCP =0-x	The CCP1 module produces an output on the RB3/CCP1 pin when a compare event occurs. The DCCP bit can read the signal on the RB3/CCP1 pin.	
PWM	CCP1CON =xx 11xx TRISCCP =0-x	The CCP1 module produces the PWM signal on the RB3/CCP1 pin. The DCCP bit can read the signal on the RB3/CCP1 pin.	

TABLE 7-5: CCP1 MODULE AND PORTB OPERATION

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared and the A/D Interrupt Flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 8-3.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 8.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference/ and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 8-3: A/D BLOCK DIAGRAM

8.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the Charge Holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 8-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range Reference Manual, (DS33023). This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

FIGURE 8-4: ANALOG INPUT MODEL

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16CXXX can be operated in four different Oscillator modes. The user can program two Configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 9-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 9-3).

FIGURE 9-2:	CRYSTAL/CERAMIC
	RESONATOR OPERATION
	(HS, XT OR LP
	OSC CONFIGURATION)

FIGURE 9-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1: CERAMIC RESONATORS

Ranges Tested:

- J -	3						
Mode	Freq	OSC1	OSC2				
XT	455 kHz	68-100 pF	68-100 pF				
	2.0 MHz	15-68 pF	15-68 pF				
	4.0 MHz	15-68 pF	15-68 pF				
HS	8.0 MHz	10-68 pF	10-68 pF				
	16.0 MHz	10-22 pF	10-22 pF				
These values are for design guidance only. See							
notes at bottom of page.							

TABLE 9-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
XT	200 kHz	47-68 pF	47-68 pF	
	1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	15 pF	
	8 MHz	15-33 pF	15-33 pF	
	20 MHz	15-33 pF	15-33 pF	
These values are for design guidance only. See notes at bottom of page.				

Note 1:	Recommended values of C1 and C2 are
	identical to the ranges tested (Table 9-1).

- 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode, as well as XT mode to avoid overdriving crystals with low drive level specification.

9.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (to a level of 1.5V-2.1V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (parameter D004). For a slow rise time, see Figure 9-5.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

FIGURE 9-5:

RESET CIRCUIT (FOR SLOW VDD POWER-UP)

EXTERNAL POWER-ON

- Def 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - **3:** $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

9.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33), on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A Configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

9.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

9.7 Brown-Out Reset (BOR)

The PIC16C712/716 members have on-chip Brownout Reset circuitry. A Configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V, refer to VBOR parameter D005(VBOR) for a time greater than parameter (TBOR) in Table 12-6. The brown-out situation will reset the chip. A Reset is not guaranteed to occur if VDD falls below 4.0V for less than parameter (TBOR).

On any Reset (Power-on, Brown-out, Watchdog, etc.) the chip will remain in Reset until VDD rises above VBOR. The Power-up Timer will now be invoked and will keep the chip in Reset an additional 72 ms.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-Up Timer will execute a 72 ms Reset. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

For operations where the desired brown-out voltage is other than 4V, an external brown-out circuit must be used. Figure 9-8, 9-9 and 9-10 show examples of external brown-out protection circuits.

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	0x 0000	xx xxxx	xu uuuu
PORTB ⁽⁵⁾	xxxx xxxx	uuuu uuuu	uuuu uuuu
DATACCP	x-x	u-u	u-u
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 -00x	0000 -00u	uuuu -uuu (1)
	0000	0000	uuuu (1)
PIRT	-0 0000	-0 0000	-u uuuu (1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	นนนน นนนน
T2CON	-000 0000	-000 0000	-uuu uuuu
CCPR1L	xxxx xxxx	นนนน นนนน	นนนน นนนน
CCPR1H	xxxx xxxx	uuuu uuuu	นนนน นนนน
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	xxxx xxxx	นนนน นนนน	นนนน นนนน
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	1111 1111	1111 1111	นนนน นนนน
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISCCP	xxxx x1x1	xxxx x1x1	xxxx xuxu
PIF1	0000	0000	uuuu
	-0 0000	-0 0000	-u uuuu
PCON	0q	uq	uq
PR2	1111 1111	1111 1111	1111 1111
ADCON1	000	000	uuu

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16C712/716

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for Reset value for specific condition.

4: On any device Reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

12.2 DC Characteristics: PIC16LC712/716-04 (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated)						
DC CHA	RACTER	ISTICS	Operating temperature			$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial			
						-40°	$C \le TA \le +85^{\circ}C$ for industrial		
Param	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
NO.									
D001	Vdd	Supply Voltage	2.5	—	5.5	V			
			VBOR*	—	5.5	V	BOR enabled (Note 7)		
D002*	VDR	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V			
D003	VPOR	VDD Start Voltage to ensure inter-	—	Vss	—	V	See section on Power-on Reset for details		
		nal Power-on Reset signal							
D004*	SVDD	VDD Rise Rate to ensure internal	0.05	—	—	V/ms	PWRT enabled (PWRTE bit clear)		
D004A*		Power-on Reset signal	TBD	—	—		PWRT disabled (PWRTE bit set)		
							See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset	3.65	—	4.35	V	BODEN bit set		
		voltage trip point							
D010	IDD	Supply Current ^(2,5)	—	2.0	3.8	mA	XT, RC osc modes		
							Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			—	22.5	48	μA	LP osc mode		
							FOSC = 32 kHz, VDD = 3.0V, WDT disabled		
D020	IPD	Power-down Current ^(3,5)	—	7.5	30	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$		
D021			—	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			—	0.9	5	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		
		Module Differential Current ⁽⁶⁾							
D022*	∆Iwdt	Watchdog Timer	—	6.0	20	μA	WDTE bit set, VDD = 4.0V		
D022A*	ΔIBOR	Brown-out Reset	_	TBD	200	μA	BODEN bit set, VDD = 5.0V		
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	KHz	All temperatures		
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\underline{OSC1} = external \text{ square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,}$

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.

4: For RC Osc mode, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to this trip point.

PIC16C712/716

TABLE 12-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓	_	75	200	ns	Note 1	
11*	TosH2ckH	OSC1; to CLKOUT;		-	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT Ø to Port out valid		—	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT {		Tosc + 200	_	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT {		0		—	ns	Note 1
17*	TosH2ioV	OSC1¦ (Q1 cycle) to Port out valid		—	50	150	ns	
18*	TosH2iol	OSC1¦ (Q2 cycle) to Port input	Standard	100	_	—	ns	
18A*		invalid (I/O in hold time)	Extended (LC)	200		—	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O in s	setup time)	0		—	ns	
20*	TioR	Port output rise time	Standard	—	10	40	ns	
20A*			Extended (LC)	—		80	ns	
21*	TioF	Port output fall time	Standard	—	10	40	ns	
21A*			Extended (LC)	—	_	80	ns	
22††*	TINP	INT pin high or low time		TCY	_	—	ns	
23††*	Trbp	RB7:RB4 change INT high or lov	v time	TCY	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edge.

Note1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

FIGURE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 12-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
NU.							
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	—	-	TOSC = OSC1 period
33*	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O High-impedance from MCLR Low or WDT Reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—	_	μs	$VDD \le BVDD (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C712/716

FIGURE 12-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param	Sym.	Characteristic			Min.	Typ†	Max.	Units	Conditions
No.									
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	_		ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	—	—	ns	
				With Prescaler	Greater of:	—	-	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
			-		N				
45*	Tt1H	T1CKI High Time	Synchronous, F	rescaler = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	Standard	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended (LC)	25	—	_	ns	
			Asynchronous	Standard	30	—	—	ns	
				Extended (LC)	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	Prescaler = 1	0.5TCY + 20	—	_	ns	Must also meet
			Synchronous,	Standard	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended (LC)	25	_	_	ns	
			Asynchronous	Standard	30	-	—	ns	
				Extended (LC)	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	Standard	Greater of:	—	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				Extended (LC)	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	Standard	60	—	—	ns	
				Extended (LC)	100	—	—	ns	
	Ft1	Timer1 oscillator inp	out frequency rar	ige	DC	—	200	kHz	
		(oscillator enabled b	by setting bit T1C	DSCEN)					
48	TCKEZtmr1	Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			N	MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.015	.023	.030	0.38	0.57	0.76	
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26	
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49	
Overall Length	D	.880	.900	.920	22.35	22.86	23.37	
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30	
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52	
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53	
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80	
Window Width	W1	.130	.140	.150	3.30	3.56	3.81	
Window Length	W2	.190	.200	.210	4.83	5.08	5.33	

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

TRISC Register	12
Postscaler, Timer2	
Select (TOUTPS3:TOUTPS0 Bits)	36
Postscaler, WDT	29
Assignment (PSA Bit) 14, Block Diagram	29
Block Diagram	20
Switching Between Timer() and WDT	30
Power-down Mode. See Sleep	00
Power-on Reset (POR) 51, 54, 55, 58,	59
Oscillator Start-up Timer (OST) 51,	55
POR Status (POR Bit)	18
Power Control (PCON) Register	58
Power-down (PD Bit) 13,	54
Power-on Reset Circuit, External	55
Power-up Timer (PWRT) 51,	55
Time-out (TO Bit)	52 57
Time-out Sequence	57
Time-out Sequence on Power-up	60
Timing Diagram	83
Prescaler, Capture	40
Prescaler, Timer0	29
Assignment (PSA Bit) 14,	29
Block Diagram	30
Rate Select (PS2:PS0 Bits) 14,	29
Switching Between Timer0 and WDT	30
Prescaler, TIMERT	32
Prescaler Timer2	42
Select (T2CKPS1:T2CKPS0 Bits)	36
Product Identification System	103
Program Counter	
PCL Register 11,	19
PCLATH Register 11, 19,	62
Reset Conditions	F O
Program Memory	58
	. 9
Interrupt Vector	58 . 9 9
Interrupt Vector	58 9 9 19
Interrupt Vector	58 9 9 19 9
Interrupt Vector	58 9 9 19 9 9 9
Interrupt Vector	58 9 9 .19 .9 .9 .65 67
Interrupt Vector	58 9 9 9 .9 .9 .65 .67 .42
Interrupt Vector	58 9 9 9 9 9 .65 .67 .42 .42
Interrupt Vector Paging	58 9 9 9 9 9 9 9
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42 42 42
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42 42 42
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42 42 42 42 42 42 42
Interrupt Vector Paging	58 . 9 . 9 19 . 9 65 67 42 42 42 42 42 42 42 42 42 42 42 42 42
Interrupt Vector Paging	58 9 9 9 9 9 9 9 9 65 42 42 42 42 42 42 42 4
Interrupt Vector Paging	58 9 9 9 9 65 67 42 42 42 42 42 42 43 42 43 42 16 17
Interrupt Vector Paging	58 . 9 . 9 19 . 9 65 67 42 42 42 42 42 42 42 43 42 42 43 42 16 17
Interrupt Vector Paging	58 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9
Interrupt Vector Paging	58 . 9 . 9 19 . 9 65 67 42 42 42 42 42 42 42 42 42 42 42 16 17 42
Interrupt Vector Paging	58 . 9 . 9 19 . 9 . 9 65 67 42 42 42 42 42 42 43 42 43 42 16 17 42
Interrupt Vector Paging	58 . 9 . 9 19 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9

N	
RAM. See Data Memory	
Reader Response	104
Register File	10
Register File Map	10
Reset	51, 54
Block Diagram	56

Brown-out Reset (BOR). See Brown-out Reset (BOR)
MCLR Reset. See MCLR	
Power-on Reset (POR). See Power-on Reset (POR)	
Reset Conditions for All Registers	59
Reset Conditions for PCON Register	58
Reset Conditions for Program Counter	58
Reset Conditions for STATUS Register	58
Timing Diagram	83
WDT Reset. See Watchdog Timer (WDT)	
Revision History	95

S

Sleep	4 4
Software Simulator (MPLAB SIM) 70	0
Special Event Trigger. See Compare	
Special Features of the CPU 51	1
Special Function Registers 11	1
Speed, Operating	1
Stack 19	9
STATUS Register 11, 13, 62	2
C Bit	3
DC Bit 13	3
IRP Bit 13	3
PD Bit 13, 54	4
RP1:RP0 Bits13	3
TO Bit 13, 54	4
Z Bit	3

Т

1	
T1CON Register	11, 31
T1CKPS1:T1CKPS0 Bits	
T1OSCEN Bit	31
T1SYNC Bit	31
TMR1CS Bit	31
TMR1ON Bit	31
T2CON Register	11, 36
T2CKPS1:T2CKPS0 Bits	
TMR2ON Bit	36
TOUTPS3:TOUTPS0 Bits	36
Timer0	29
Block Diagram	29
Clock Source Edge Select (T0SE Bit)	14, 29
Clock Source Select (T0CS Bit)	14, 29
Overflow Enable (T0IE Bit)	
Overflow Flag (TOIF Bit)	15, 62
Overflow Interrupt	30, 62
Prescaler. See Prescaler, Timer0	,
Timing Diagram	84
TMR0 Register	11
Timer1	31
Block Diagram	32
Capacitor Selection	34
Clock Source Select (TMR1CS Bit)	31
External Clock Input Sync (T1SYNC Bit)	31
Module On/Off (TMR1ON Bit)	31
Oscillator	31, 34
Oscillator Enable (T1OSCEN Bit)	
Overflow Enable (TMR1IE Bit)	16
Overflow Flag (TMR1IF Bit)	17
Overflow Interrupt	31, 34
Prescaler. See Prescaler, Timer1	·
Special Event Trigger (CCP)	34, 41
T1CON Register	11, 31
Timing Diagram	
TMR1H Register	11, 31
5	

PIC16C712/716 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device Fi	<u>-XX X (XX XXX</u> requency Temperature Package Pattern Range Range	 Examples: a) PIC16C716 - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301. b) PIC16LC712 - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits. c) PIC16C712 - 20I/P = Industrial temp., PDIP package, 20MHz, normal VDD limits.
Device:	PIC16C712 ⁽¹⁾ , PIC16C712T ⁽²⁾ ;VDD range 4.0V to 5.5V PIC16LC712 ⁽¹⁾ , PIC16LC712T ⁽²⁾ ;VDD range 2.5V to 5.5V PIC16C716 ⁽¹⁾ , PIC16C716T ⁽²⁾ ;VDD range 4.0V to 5.5V PIC16LC716 ⁽¹⁾ , PIC16LC716T ⁽²⁾ ;VDD range 2.5V to 5.5V	
Frequency Range:	04 = 4 MHz 20 = 20 MHz	Note 1: C = CMOS LC = Low Power CMOS 2: T = in tape and reel – SOIC, SSOP packages only
Temperature Range:	blank = 0°C to 70°C (Commercial) I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	 LC extended temperature device is not offered. LC is not offered at 20 MHz
Package:	JW = Windowed CERDIP SO = SOIC P = PDIP SS = SSOP	
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)