

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c712-20-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 **Data Memory Organization**

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
= 00 \rightarrow	Bank 0
$= 01 \rightarrow$	Bank 1
= $10 \rightarrow$	Bank 2 (not implemented)
= 11 \rightarrow	Bank 3 (not implemented)
Note 1	 Maintain this bit clear to ensure upward compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

GENERAL PURPOSE REGISTER 2.2.1 FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

IGURE 2-3:	REGISTER	FILE MAP
		••••••••

	F	lle	
۸	44	ro	~

F

File			File				
Address			Address				
00h	INDF ⁽¹⁾	INDF(")	80h				
01h	TMR0	OPTION_REG	81h				
02h	PCL	PCL	82h				
03h	STATUS	STATUS	83h				
04h	FSR	FSR	84h				
05h	PORTA	TRISA	85h				
06h	PORTB	TRISB	86h				
07h	DATACCP	TRISCCP	87h				
08h			88h				
09h			89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch	PIR1	PIE1	8Ch				
0Dh			8Dh				
0Eh	TMR1L	PCON	8Eh				
0Fh	TMR1H		8Fh				
10h	T1CON		90h				
11h	TMR2		91h				
12h	T2CON	PR2	92h				
13h			93h				
14h			94h				
15h	CCPR1L		95h				
16h	CCPR1H		96h				
17h	CCP1CON		97h				
18h			98h				
19h			99h				
1Ah			9Ah				
1Bh			9Bh				
1Ch			9Ch				
1Dh			9Dh				
1Eh	ADRES		9Eh				
1Fh	ADCON0	ADCON1	9Fh				
20h		General	A0h				
		Purpose					
	General	Registers	BFh				
	Registers	52 Dytes	COb				
	96 Bytes		Con				
7Fh			FFh				
	Bank 0	Bank 1	1				
Un	implemented d	ata memory loc	ations,				
read	read as '0'.						
Note 1: Not a physical register.							

Name	Bit#	Buffer	Function	
RA0/AN0	bit 0	TTL	Input/output or analog input	
RA1/AN1	bit 1	TTL	Input/output or analog input	
RA2/AN2	bit 2	TTL	Input/output or analog input	
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF	
			Input/output or external clock input for Timer0	
RA4/T0CKI	bit 4	ST	Output is open drain type	

TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	—		_(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
85h	TRISA	_	_	_(1)	PORT	A Data	Direction	Register		11 1111	11 1111
9Fh	ADCON1	—					PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Reserved bits; Do Not Use.

PORTB pins RB3:RB1 are multiplexed with several peripheral functions (Table 3-3). PORTB pins RB3:RB0 have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISB as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins, RB7:RB4, are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 3-4: BLOCK DIAGRAM OF RB1/T10S0/T1CKI PIN

PIC16C712/716

FIGURE 3-5: BLOCK DIAGRAM OF RB2/T10SI PIN

FIGURE 3-6: BLOCK DIAGRAM OF RB3/CCP1 PIN

FIGURE 3-7: BLOCK DIAGRAM OF RB7:RB4 PINS

TABLE 3-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1/T1OS0/ T1CKI	bit 1	TTL/ST ⁽¹⁾	Input/output pin or Timer1 oscillator output, or Timer1 clock input. Internal software programmable weak pull-up. See Timer1 section for detailed operation.
RB2/T1OSI	bit 2	TTL/ST ⁽¹⁾	Input/output pin or Timer1 oscillator input. Internal software programmable weak pull-up. See Timer1 section for detailed operation.
RB3/CCP1	bit 3	TTL/ST ⁽¹⁾	Input/output pin or Capture 1 input, or Compare 1 output, or PWM1 output. Internal software programmable weak pull-up. See CCP1 section for detailed operation.
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or peripheral input.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

7.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISCCP<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force					
	the CCP1 PWM output latch to the default					
	low level. This is neither the PORTB I/O					
	data latch nor the DATACCP latch.					

Figure 7-5 shows a simplified block diagram of the CCP module in PWM mode.

For a step by step procedure on how to set up the CCP module for PWM operation, see **Section 7.3.3** "**Set-Up for PWM Operation**".

FIGURE 7-5: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 7-6) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/ period).

FIGURE 7-6: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 6.0						
	"Timer2 Module") is not used in the						
	determination of the PWM frequency. The						
	postscaler could be used to have a servo						
	update rate at a different frequency than						
	the PWM output.						

7.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the $PIC^{\textcircled{B}}$ Mid-Range Reference Manual, (DS33023).

PIC16C712/716

FIGURE 8-2: ADCON1 REGISTER (ADDRESS 9Fh)

8.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the Charge Holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 8-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range Reference Manual, (DS33023). This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

FIGURE 8-4: ANALOG INPUT MODEL

8.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 8-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

8.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN3:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 8-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock	Source (TAD)	Device Frequency			
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾
RC ⁽⁵⁾	11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ⁽¹⁾

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- **2:** These values violate the minimum required TAD time.
- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for Sleep operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

PIC16C712/716

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	0x 0000	xx xxxx	xu uuuu
PORTB ⁽⁵⁾	xxxx xxxx	uuuu uuuu	uuuu uuuu
DATACCP	x-x	u-u	u-u
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 -00x	0000 -00u	uuuu -uuu (1)
	0000	0000	uuuu (1)
PIRI	-0 0000	-0 0000	-u uuuu (1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	นนนน นนนน
T2CON	-000 0000	-000 0000	-uuu uuuu
CCPR1L	xxxx xxxx	นนนน นนนน	นนนน นนนน
CCPR1H	xxxx xxxx	uuuu uuuu	นนนน นนนน
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	xxxx xxxx	นนนน นนนน	นนนน นนนน
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	1111 1111	1111 1111	นนนน นนนน
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISCCP	xxxx x1x1	xxxx x1x1	xxxx xuxu
PIF1	0000	0000	uuuu
	-0 0000	-0 0000	-u uuuu
PCON	0q	uq	uq
PR2	1111 1111	1111 1111	1111 1111
ADCON1	000	000	uuu

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16C712/716

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for Reset value for specific condition.

4: On any device Reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

9.10 Interrupts

The PIC16C712/716 devices have up to 7 sources of interrupt. The Interrupt Control Register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A Global Interrupt Enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on Reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.

FIGURE 9-14: INTERRUPT LOGIC

9.13 Power-down Mode (Sleep)

Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, powerdown the A/D and the disable external clocks. Pull all I/ O pins, that are high-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

9.13.1 WAKE-UP FROM SLEEP

The device can wake up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some peripheral interrupts.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT Time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP Capture mode interrupt.
- 3. Special Event Trigger (Timer1 in Asynchronous mode using an external clock).

Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present.

11.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

11.12 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

	Standard Operating Conditions (unless otherwise stated)							
Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commerce							$TA \leq +70^{\circ}C$ for commercial	
					-4	0°C ≤	$TA \leq +85^{\circ}C$ for industrial	
					-4	0°C ≤	$TA \leq +125^{\circ}C$ for extended	
DC CHA	RACTE	RISTICS	Operating	voltage	e VDD rang	e as de	escribed in DC spec Section 12.1	
			"DC Char	acteris	tics: PIC1	6C712	716-04 (Commercial, Industrial,	
			Extended) PIC16C712/716-20 (Commercial, Industrial,					
Extended)" and Section 12.2 "DC Characteristics: PIC16L					Characteristics: PIC16LC712/			
	-		716-04 (C	ommer	cial, Indu	strial)"		
Param	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
No.								
		Output Low Voltage						
D080	Vol	I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D083		OSC2/CLKOUT (RC Osc mode)	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C	
		Output High Voltage						
D090	Vон	I/O ports (Note 3)	VDD-0.7	-	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
			VDD-0.7	_	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С	
D092		OSC2/CLKOUT (RC Osc mode)	Vdd-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
			Vdd-0.7	_	_	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C	
D150*	Vod	Open-Drain High Voltage	—	_	8.5	V	RA4 pin	
		Capacitive Loading Specs on						
		Output Pins						
D100	Cosc2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	_	50	pF		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC Oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

12.4 AC (Timing) Characteristics

12.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1.	TppS2ppS
----	----------

2. TppS

Т			
F	Frequency	т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

12.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 12-1 apply to all timing specifications, unless otherwise noted. Figure 12-3 specifies the load conditions for the timing specifications.

TABLE 12-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Cor	ditions ((unless	otherwise	e stated)
	Operating temperature	0°C	\leq TA \leq	+70°C	for commercial
		-40°C	\leq TA \leq	+85°C	for industrial
		-40°C	\leq TA \leq	+125°C	for extended
AC CHARACTERISTICS	Operating voltage VDD rai	nge as de	escribed	in DC spe	ec Section 12.1 "DC Characteristics:
	PIC16C712/716-04 (Com	mercial,	Industri	ial, Exten	ded) PIC16C712/716-20 (Commercial,
	Industrial, Extended)" a	nd Section	on 12.2 '	"DC Char	acteristics: PIC16LC712/716-04 (Com-
	mercial, Industrial)".				
	LC parts operate for comr	mercial/in	dustrial t	temp's on	ly.

FIGURE 12-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 12-7:A/D CONVERTER CHARACTERISTICS:
PIC16C712/716-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C712/716-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC712/716-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
A01	NR	Resolution		—	_	8-bits	bit	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A02	Eabs	Total Absolute error		-	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A03	EIL	Integral linearity error		-	—	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A04	Edl	Differential linearity error		-	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A05	EFS	Full scale error		-	—	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A06	EOFF	Offset error		-	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A10	—	Monotonicity		_	guaranteed (Note 3)	_	—	VSS £ VAIN £ VREF
A20	VREF	Reference voltage		2.5V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		-	_	10.0	kΩ	
A40	IAD	A/D conversion cur-	Standard	—	180	_	μΑ	Average current consump-
	rent (VDD)		Extended (LC)	—	90	_	μΑ	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Not	e 2)	10	_	1000	μΑ μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 9.1 "Configuration Bits" . During A/D Conversion
								cycle

2: * These parameters are characterized but not tested.

3: † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

13.0 PACKAGING INFORMATION

13.1 Package Marking Information

18-Lead PDIP

18-Lead CERDIP Windowed

18-Lead SOIC (.300")

20-Lead SSOP

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

TRISC Register	12
Postscaler, Timer2	
Select (TOUTPS3:TOUTPS0 Bits)	36
Postscaler, WDT	29
Assignment (PSA Bit) 14, Block Diagram	29
Block Diagram	20
Switching Between Timer() and WDT	30
Power-down Mode. See Sleep	00
Power-on Reset (POR) 51, 54, 55, 58,	59
Oscillator Start-up Timer (OST) 51,	55
POR Status (POR Bit)	18
Power Control (PCON) Register	58
Power-down (PD Bit) 13,	54
Power-on Reset Circuit, External	55
Power-up Timer (PWRT) 51,	55
Time-out (TO Bit)	52 57
Time-out Sequence	57
Time-out Sequence on Power-up	60
Timing Diagram	83
Prescaler, Capture	40
Prescaler, Timer0	29
Assignment (PSA Bit) 14,	29
Block Diagram	30
Rate Select (PS2:PS0 Bits) 14,	29
Switching Between Timer0 and WDT	30
Prescaler, TIMERT	32
Prescaler Timer2	42
Select (T2CKPS1:T2CKPS0 Bits)	36
Product Identification System	103
Program Counter	
PCL Register 11,	19
PCLATH Register 11, 19,	62
Reset Conditions	F O
Program Memory	58
	. 9
Interrupt Vector	58 . 9 9
Interrupt Vector	58 9 9 19
Interrupt Vector	58 9 9 19 9
Interrupt Vector	58 9 9 19 9 9
Interrupt Vector	58 9 9 .19 .9 .9 .65 67
Interrupt Vector	58 9 9 9 .9 .65 67 42
Interrupt Vector	58 9 9 9 9 9 .65 .67 .42 .42
Interrupt Vector Paging	58 9 9 9 9 9 9 9
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42 42 42
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42 42 42
Interrupt Vector Paging	58 9 9 19 9 65 67 42 42 42 42 42 42 42 42 42 42
Interrupt Vector Paging	58 . 9 . 9 19 . 9 65 67 42 42 42 42 42 42 42 42 42 42 42 42 42
Interrupt Vector Paging	58 9 9 9 9 9 9 9 9 65 42 42 42 42 42 42 42 4
Interrupt Vector Paging	58 9 9 9 9 65 67 42 42 42 42 42 42 43 42 43 42 16 17
Interrupt Vector Paging	58 . 9 . 9 19 . 9 65 67 42 42 42 42 42 42 42 43 42 42 43 42 16 17
Interrupt Vector Paging	58 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9
Interrupt Vector Paging	58 . 9 . 9 19 . 9 65 67 42 42 42 42 42 42 42 42 42 42 42 16 17 42
Interrupt Vector Paging	58 . 9 . 9 19 . 9 . 9 65 67 42 42 42 42 42 42 43 42 43 42 16 17 42
Interrupt Vector Paging	58 . 9 . 9 19 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9

N	
RAM. See Data Memory	
Reader Response	104
Register File	10
Register File Map	10
Reset	51, 54
Block Diagram	56

Brown-out Reset (BOR). See Brown-out Reset (BOR)
MCLR Reset. See MCLR	
Power-on Reset (POR). See Power-on Reset (POR)	
Reset Conditions for All Registers	59
Reset Conditions for PCON Register	58
Reset Conditions for Program Counter	58
Reset Conditions for STATUS Register	58
Timing Diagram	83
WDT Reset. See Watchdog Timer (WDT)	
Revision History	95

S

Sleep	4 4
Software Simulator (MPLAB SIM) 70	0
Special Event Trigger. See Compare	
Special Features of the CPU 51	1
Special Function Registers 11	1
Speed, Operating	1
Stack 19	9
STATUS Register 11, 13, 62	2
C Bit	3
DC Bit 13	3
IRP Bit 13	3
PD Bit 13, 54	4
RP1:RP0 Bits13	3
TO Bit 13, 54	4
Z Bit	3

Т

1	
T1CON Register	11, 31
T1CKPS1:T1CKPS0 Bits	
T1OSCEN Bit	31
T1SYNC Bit	31
TMR1CS Bit	31
TMR1ON Bit	31
T2CON Register	11, 36
T2CKPS1:T2CKPS0 Bits	
TMR2ON Bit	36
TOUTPS3:TOUTPS0 Bits	36
Timer0	29
Block Diagram	29
Clock Source Edge Select (T0SE Bit)	14, 29
Clock Source Select (T0CS Bit)	14, 29
Overflow Enable (T0IE Bit)	
Overflow Flag (TOIF Bit)	15, 62
Overflow Interrupt	30, 62
Prescaler. See Prescaler, Timer0	,
Timing Diagram	84
TMR0 Register	11
Timer1	31
Block Diagram	32
Capacitor Selection	34
Clock Source Select (TMR1CS Bit)	31
External Clock Input Sync (T1SYNC Bit)	31
Module On/Off (TMR1ON Bit)	31
Oscillator	31, 34
Oscillator Enable (T1OSCEN Bit)	
Overflow Enable (TMR1IE Bit)	16
Overflow Flag (TMR1IF Bit)	17
Overflow Interrupt	31, 34
Prescaler. See Prescaler, Timer1	·
Special Event Trigger (CCP)	34, 41
T1CON Register	11, 31
Timing Diagram	
TMR1H Register	11, 31
5	