

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c716-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	9
3.0	I/O Ports	21
4.0	Timer0 Module	29
5.0	Timer1 Module	31
6.0	Timer2 Module	36
7.0	Capture/Compare/PWM (CCP) Module(s)	39
8.0	Analog-to-Digital Converter (A/D) Module	45
9.0	Special Features of the CPU	51
10.0	Instruction Set Summary	67
11.0	Development Support	69
12.0	Electrical Characteristics	73
13.0	Packaging Information	89
Revis	ion History	95
Conv	ersion Considerations	95
Migra	tion from Base-line to Mid-Range Devices	95
Index		97
On-Li	ne Support1	01
Read	er Response 1	02
PIC16	SC712/716 Product Identification System 1	03

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

PIC16C712/716

NOTES:

2.2 **Data Memory Organization**

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
= 00 \rightarrow	Bank 0
$= 01 \rightarrow$	Bank 1
= $10 \rightarrow$	Bank 2 (not implemented)
= 11 \rightarrow	Bank 3 (not implemented)
Note 1	 Maintain this bit clear to ensure upward compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

GENERAL PURPOSE REGISTER 2.2.1 FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

IGURE 2-3:	REGISTER	FILE MAP
		••••••••

	F	lle	
۸	44	ro	~

F

File			File
Address			Address
00h	INDF ⁽¹⁾	INDF(")	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	DATACCP	TRISCCP	87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h			93h
14h			94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h		General	A0h
		Purpose	
	General	Registers	BFh
	Registers	52 Dytes	COb
	96 Bytes		Con
7Fh			FFh
	Bank 0	Bank 1	1
Un	implemented d	ata memory loc	ations,
read	l as '0'.		
NOTE 1: NO	ot a physical re	gister.	

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- · Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

FIGURE 2-10: DIRECT/INDIRECT ADDRESSING

2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	MOVLW MOVWF	0x20 FSR	;initialize pointer ; to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue
CONTINUE	INCF BTFSS GOTO :	FSR FSR,4 NEXT	<pre>;inc pointer ;all done? ;NO, clear next ;YES, continue</pre>

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-10. However, IRP is not used in the PIC16C712/716.

Name	Bit#	Buffer	Function	
RA0/AN0	bit 0	TTL	nput/output or analog input	
RA1/AN1	bit 1	TTL	Input/output or analog input	
RA2/AN2	bit 2	TTL	Input/output or analog input	
RA3/AN3/VREF	bit 3	TTL	nput/output or analog input or VREF	
			Input/output or external clock input for Timer0	
RA4/T0CKI	bit 4	ST	Output is open drain type	

TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	—		_(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
85h	TRISA	_	_	_(1)	PORT	A Data	Direction	Register		11 1111	11 1111
9Fh	ADCON1	—					PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Reserved bits; Do Not Use.

5.3 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. Table 5-2 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-2:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq.	C1	C2	
LP	32 kHz	33 pF	33 pF	
	100 kHz	15 pF	15 pF	
	200 kHz	15 pF	15 pF	
These values are for design guidance only.				
Note 1: Hig	her capacitand	ce increases tl	ne stability of	

oscillator but also increases the start-up time.

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

5.4 Timer1 Interrupt

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.5 Resetting Timer1 using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "Special Event Trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The Special Event Triggers from the	э
	CCP1 module will not set interrupt flag bi	t
	TMR1IF (PIR1<0>).	

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

Value on Value on Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 POR, all other Bit 2 BOR Resets 0Bh,8Bh INTCON GIE PEIE TOIE INTE RBIE **T0IF** INTE RBIF 0000 000x 0000 000u -0---000 -0---000 0Ch PIR1 ADIF CCP1IF TMR2IF TMR1IF -0---000 -0---000 8Ch PIE1 ADIE CCP1IE TMR2IE TMR1IE 0Eh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register XXXX XXXX uuuu uuuu 0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register XXXX XXXX uuuu uuuu --00 0000 --uu uuuu T1CKPS1 T1CKPS0 T1OSCEN T1SYNC 10h T1CON ____ ____ TMR1CS TMR10N -x-x _ _ _ _ -11-11 07h DATACC DCCP DT1CK Р ---- -1-1 ---- -1-1 87h TRISCCP TCCP TT1CK

TABLE 5-3: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, --- = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

7.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is either:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-4: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as the CCP output by clearing the TRISCCP<2> bit.

Note:	Clearing the CCP1CON register will force the RB3/CCP1 compare output latch to
	the default low level. This is neither the
	PORTB I/O data latch nor the DATACCP
	latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The Special Event Trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The Special Event Trigger output of CCP1 also starts an A/D conversion (if the A/D module is enabled).

Note: The Special Event Trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 7-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
07h	DATACCP			— — — — DCCP — DT1CK x					xxxx xxxx	xxxx xuxu	
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1		ADIF	—	—	—	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
0Eh	TMR1L	Holding	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding	Registe	r for the Mo	st Significa	nt Byte of th	e 16-bit TN	/IR1 Regist	er	XXXX XXXX	uuuu uuuu
10h	T1CON			T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture	/Compa	re/PWM Re	gister 1 (LS	SB)				XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture	/Compa	re/PWM Re	gister 1 (MS	SB)				XXXX XXXX	uuuu uuuu
17h	CCP1CON			DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
87h	TRISCCP			—	—	—	TCCP	—	TT1CK	xxxx x1x1	xxxx x1x1
8Ch	PIE1		ADIE	—	—	—	CCP1IE	TMR2IE	TMR1IE	-0000	-0000

Legend: x = unknown, u = unchanged, — = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

9.0 SPECIAL FEATURES OF THE CPU

The PIC16C712/716 devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection. These are:

- OSC Selection
- Reset:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code protection
- ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

These devices have a Watchdog Timer, which can be shut off only through Configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of Configuration bits are used to select various options.

Additional information on special features is available in the $PIC^{\mbox{\tiny B}}$ Mid-Range Reference Manual, (DS33023).

9.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

FIGURE 9-1: CONFIGURATION WORD

					BODEN			PWRTE	WDTE	FOSC1	FOSCO	Register: CONFIG
			010		DODEN		010		WDIE	10001	10000	Address2007h
DITI3	Unid											
bit 13-8, 5	bit 13-8, 5-4: CP1:CP0: Code Protection bits ⁽²⁾											
	Code Pro	tection	for 2K	Prog	ram mem	ory (F	PIC16C	2716)				
	11 = Prog	gramm	ing coo	le pro	tection of	f						
	10 = 0400h-07FFh code protected											
	01 = 0200)h-07F	Fh coo	le pro	tected							
	00 = 0000	0h-07F	Fh coo	le pro	tected							
bit 13-8, 5	-4:											
	Code Pro	tection	for 1K	Prog	ram mem	ory bi	ts (PIC	C16C712)				
	11 = Prog	gramm	ing coo	le pro	tection of	f						
	10 = Prog	gramm	ing coo	le pro	tection of	f						
	01 = 0200)h-03F	Fh coo	le-pro	tected							
	00 = 0000)h-03F	Fh coo	le-pro	tected							
h:t 7.	Unimala			d o o (1	,,							
bit 6:	BODEN	Brown		u as	I nabla bit	(1)						
DIL O.		onable	-out Re			.,						
	1 = BOR	dicable	iu Nd									
hit 3		Dower	-un Tin		able hit (1)						
bit 5.	1 - PWR	T disak	-up m led									
	0 – PWR	T onah										
bit 2		/atchde	ncu na Tim	er En:	able hit							
511 2.	1 = WDT	enable	bg inn bd									
	0 = WDT	disable	ed									
bit 1-0:	FOSC1:F	OSCO	: Oscill	ator S	election I	oits						
	11 = RC	oscillat	or									
	10 = HS c	oscillat	or									
	01 = XT c	scillat	or									
	00 = LP c	scillato	or									
Note 1:	Enabling Bro	own-ou	ut Rese	et auto	matically	enabl	es Po	wer-up Ti	mer (PW	RT) regar	dless of th	e value of bit PWRTE.
	Ensure the I	Power-	up Tin	ner is	enabled a	anytim	e Brov	vn-out Re	set is en	abled.		
2:	All of the CF	21:CP0	pairs	have	to be give	n the	same	value to e	enable the	e code pr	otection sc	heme listed.

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

$$\frac{R1}{R1 + R2} = 0$$

- 2: Internal Brown-out Reset should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-10: EXTERNAL BROWN-OUT **PROTECTION CIRCUIT 3**

Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active Reset pins. There are 7 different trip point selections to accommodate 5V and 3V systems

9.8 **Time-out Sequence**

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 9-11, Figure 9-12, and Figure 9-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 9-13). This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Table 9-5 shows the Reset conditions for some Special Function Registers, while Table 9-6 shows the Reset conditions for all the registers.

9.12 Watchdog Timer (WDT)

The Watchdog Timer is as a free running, on-chip, RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device have been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT Time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT Time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer Time-out.

The WDT can be permanently disabled by clearing Configuration bit WDTE (**Section 9.1 "Configuration Bits**").

WDT time-out period values may be found in the Electrical Specifications section under TwDT (parameter #31). Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 9-15: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 9-16: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bits 13:8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	_	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION_REG	N/A	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer. **Note 1:** See Figure 9-1 for operation of these bits.

12.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1) (PDIP and SOIC)	
Total power dissipation (Note 1) (SSOP)	0.65W
Maximum current out of Vss pin	
Maximum current into Vod pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	
Maximum current sourced by PORTA and PORTB (combined)	200 mA

- **Note 1:** Power dissipation is calculated as follows: $Pdis = VDD \times \{IDD \sum IOH\} + \sum \{(VDD-VOH) \times IOH\} + \sum (VOI \times IOL)$ **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.
 - Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.1 DC Characteristics: PIC16C712/716-04 (Commercial, Industrial, Extended) PIC16C712/716-20 (Commercial, Industrial, Extended)

Standard Operating						onditions (unless otherwise stated)			
DC CHA	RACTER	ISTICS	Operating	g tempe	rature	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial			
						-40°	$C \leq IA \leq +85^{\circ}C$ for industrial		
						-40			
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage	4.0	—	5.5	V	XT, RC and LP osc mode		
D001A			4.5	_	5.5	V	HS osc mode		
			VBOR*	—	5.5	V	BOR enabled ⁽⁷⁾		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	_	V			
D003	VPOR	VDD Start Voltage to ensure inter- nal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details		
D004*	SVDD	VDD Rise Rate to ensure internal	0.05	—	_	V/ms	PWRT enabled (PWRTE bit clear)		
D004A*		Power-on Reset signal	TBD		—		PWRT disabled (PWRTE bit set)		
							See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset voltage trip point	3.65	_	4.35	V	BODEN bit set		
D010	Idd	Supply Current ^(2,5)	_	0.8	2.5	mA	Fosc = 4 MHz, VDD = 4.0V		
D013			—	4.0	8.0	mA	Fosc = 20 MHz, VDD = 4.0V		
D020	IPD	Power-down Current ^(3,5)		10.5	42	μΑ	VDD = 4.0V, WDT enabled,-40°C to +85°C		
			—	1.5	16	μA	VDD = $4.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$		
D021			—	1.5	19	μA	VDD = 4.0V, WDT disabled, -40°C to +85°C		
D021B			—	2.5	19	μA	VDD = 4.0V, WDT disabled,-40°C to +125°C		
		Module Differential Current ⁽⁶⁾							
D022*	∆IWDT	Watchdog Timer	_	6.0	20	μA	WDTE bit set, VDD = 4.0V		
D022A*	ΔIBOR	Brown-out Reset	—	TBD	200	μA	BODEN bit set, VDD = 5.0V		
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	KHz	All temperatures		
		RC Oscillator Operating Frequency	0	_	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.

4: For RC Osc mode, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to this trip point.

12.2 DC Characteristics: PIC16LC712/716-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)								
DC CHA	RACTER	ISTICS	Operating	g tempe	rature	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial			
						-40°	$C \le TA \le +85^{\circ}C$ for industrial		
Param	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
NO.									
D001	Vdd	Supply Voltage	2.5	—	5.5	V			
			VBOR*	—	5.5	V	BOR enabled (Note 7)		
D002*	VDR	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V			
D003	VPOR	VDD Start Voltage to ensure inter-	—	Vss	—	V	See section on Power-on Reset for details		
		nal Power-on Reset signal							
D004*	SVDD	VDD Rise Rate to ensure internal	0.05	—	—	V/ms	PWRT enabled (PWRTE bit clear)		
D004A*		Power-on Reset signal	TBD	—	—		PWRT disabled (PWRTE bit set)		
							See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset	3.65	—	4.35	V	BODEN bit set		
		voltage trip point							
D010	IDD	Supply Current ^(2,5)	—	2.0	3.8	mA	XT, RC osc modes		
							Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			—	22.5	48	μA	LP osc mode		
							FOSC = 32 kHz, VDD = 3.0V, WDT disabled		
D020	IPD	Power-down Current ^(3,5)	—	7.5	30	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$		
D021			—	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			—	0.9	5	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		
		Module Differential Current ⁽⁶⁾							
D022*	∆Iwdt	Watchdog Timer	—	6.0	20	μA	WDTE bit set, VDD = 4.0V		
D022A*	ΔIBOR	Brown-out Reset	_	TBD	200	μA	BODEN bit set, VDD = 5.0V		
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	KHz	All temperatures		
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\underline{OSC1} = external \text{ square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,}$

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.

4: For RC Osc mode, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to this trip point.

12.3 DC Characteristics: PIC16C712/716-04 (Commercial, Industrial, Extended) PIC16C712716-20 (Commercial, Industrial, Extended) PIC16LC712/716-04 (Commercial, Industrial)

			Standard	Opera	ting Cond	itions (unless otherwise stated)				
			Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
				•	-4	°C ≤	$TA \leq +85^{\circ}C$ for industrial				
					-4	°C ≤	$TA \leq +125^{\circ}C$ for extended				
DC CHA	RACTE	RISTICS	Operating	voltage	e VDD rang	e as de	escribed in DC spec Section 12.1				
				acteris	tics: PIC1	6C712	716-04 (Commercial, Industrial,				
			Extended) PIC16C712/716-20 (Commercial, Industrial,								
			Extended)" and Section 12.2 "DC Characteristics: PIC16LC712/								
			716-04 (Commercial, Industrial)"								
Param	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions				
No.											
		Input Low Voltage									
	Vi∟	I/O ports									
D030		with TTL buffer	Vss	_	0.8V	V	$4.5V \le VDD \le 5.5V$				
D030A			Vss	_	0.15Vdd	V	otherwise				
D031		with Schmitt Trigger buffer	Vss	_	0.2Vdd	V					
D032		MCLR, OSC1 (in RC mode)	Vss	_	0.2Vdd	V					
D033		OSC1 (in XT. HS and LP	Vss	_	0.3VDD	V	(Note 1)				
		modes)									
		Input High Voltage									
	Vін	I/O ports		_							
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \le VDD \le 5.5V$				
D040A			0.25VDD	_	Vdd	V	otherwise				
			+ 0.8V								
D041		with Schmitt Trigger buffer	0.8Vdd	_	Vdd	V	For entire VDD range				
D042		MCLR	0.8Vdd	_	Vdd	V					
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	_	Vdd	V	(Note 1)				
D043		OSC1 (in RC mode)	0.9Vdd	_	Vdd	V					
		Input Leakage Current									
		(Notes 2, 3)									
D060	lı∟	I/O ports		_	±1	μA	$Vss \leq VPIN \leq VDD$,				
							Pin at high-impedance				
D061		MCLR, RA4/T0CKI		_	±5	μA	$Vss \le VPIN \le VDD$				
D063		OSC1	_	_	±5	μA	$Vss \leq VPIN \leq VDD$,				
							XT, HS and LP osc modes				
D070	I PURB	PORTB weak pull-up current	50	250	400	μΑ	VDD = 5V, VPIN = VSS				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC Oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

12.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
No.							
1A	Fosc	External CLKIN Frequency	DC		4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μS	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15		—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

TABLE 12-8: A/D CONVERSION REQUIREMENTS

Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
130	TAD	A/D clock period	Standard	1.6		_	μs	Tosc based, VREF ≥ 3.0V
			Extended (LC)	2.0	—	—	μS	Tosc based, VREF full range
			Standard	2.0	4.0	6.0	μs	A/D RC Mode
			Extended (LC)	3.0	6.0	9.0	μS	A/D RC Mode
131	TCNV	Conversion time (not including S/H time) (Note 1)		11	—	11	TAD	
132	TACQ	Acquisition time		(Note 2)	20	—	μS	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert	Æ sample time	1.5 §	—	—	TAD	

: * These parameters are characterized but not tested.

: † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

: § This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 9.1 "Configuration Bits" for min. conditions.

PIC16C712/716

NOTES:

PIC16C712/716

TMR1L Register 11, 31
Plack Diagram 26
Biock Didyidiii
POSISCAIEI. See POSISCAIEI, TIITIEIZ
PRZ Register 12, 30, 42
Prescaler. See Prescaler, Timer2
12CON Register 11, 36
TMR2 Register 11, 36
TMR2 to PR2 Match Enable (TMR2IE Bit) 16
TMR2 to PR2 Match Flag (TMR2IF Bit)17
TMR2 to PR2 Match Interrupt 36, 37, 42
Timing Diagrams
Time-out Sequence on Power-up60
Wake-up from Sleep via Interrupt
Timing Diagrams and Specifications
A/D Conversion
Brown-out Reset (BOR)
Capture/Compare/PWM (CCP) 85
CI KOUT and I/O
External Clock 81
Oscillator Start-un Timer (OST)
Dowor up Timor (DWPT)
Resei
Timeru and Timer1
Watchdog Timer (WDT) 83

W

W Register
Wake-up from Sleep 51
Wake-up from Sleep 64
Interrupts 58, 59
MCLR Reset 59
Timing Diagram 65
WDT Reset
Watchdog Timer (WDT) 51, 63
Block Diagram 63
Enable (WDTE Bit) 52, 63
Postscaler. See Postscaler, WDT
Programming Considerations 63
RC Oscillator 63
Time-out Period 63
Timing Diagram 83
WDT Reset, Normal Operation 54, 58, 59
WDT Reset, Sleep 54, 58, 59
WWW Address 101
WWW, On-Line Support 3

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1999-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769751

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.