

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c716-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: P	IC16C712/71		DESCRIP		
Pin	PIC16C	712/716	Pin	Buffer	
Name	DIP, SOIC	SSOP	Туре	Туре	Description
MCLR/VPP	4	4			
MCLR			I	ST	Master clear (Reset) input. This pin is
VPP			Р		an active low Reset to the device. Programming voltage input
OSC1/CLKIN	16	18	Г		
OSCI/CLKIN OSCI	10	10	1	ST	Oscillator crystal input or external clock
0001				01	source input. ST buffer when config-
					ured in RC mode. CMOS otherwise.
CLKIN			I	CMOS	External clock source input.
OSC2/CLKOUT	15	17			
OSC2			0	_	Oscillator crystal output. Connects to
					crystal or resonator in crystal oscillator mode.
CLKOUT			0		In RC mode, OSC2 pin outputs
GEROOT			Ŭ		CLKOUT which has 1/4 the frequency
					of OSC1, and denotes the instruction
					cycle rate.
					PORTA is a bidirectional I/O port.
RA0/AN0	17	19			
RA0			I/O	TTL	Digital I/O
AN0			I	Analog	Analog input 0
RA1/AN1	18	20	1/0		
RA1 AN1			I/O I	TTL Analog	Digital I/O Analog input 1
		4	I	Analog	Analog input 1
RA2/AN2 RA2	1	1	I/O	TTL	Digital I/O
AN2			1/0	Analog	Analog input 2
RA3/AN3/VREF	2	2	•	,	
RA3	2	£	I/O	TTL	Digital I/O
AN3			I	Analog	Analog input 3
VREF			I	Analog	A/D Reference Voltage input.
RA4/T0CKI	3	3			
RA4			I/O	ST/OD	Digital I/O. Open drain when configured
TOOK				OT	as output.
TOCKI		input C	I	ST OS compatible	Timer0 external clock input

TABLE 1-1: PIC16C712/716 PINOUT DESCRIPTION

 Legend:
 TTL = TTL-compatible input
 CMOS = CMOS compatible input or output

 ST = Schmitt Trigger input with CMOS levels
 OD = Open drain output

 SM = SMBus compatible input. An external resistor is required if this pin is used as an output

 NPU = N-channel pull-up
 PU = Weak internal pull-up

 No-P diode = No P-diode to VDD
 AN = Analog input or output

 I = input
 O = output

 P = Power
 L = LCD Driver

2.2 **Data Memory Organization**

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
= 00 \rightarrow	Bank 0
= 01 \rightarrow	Bank 1
= 10 \rightarrow	Bank 2 (not implemented)
= 11 \rightarrow	Bank 3 (not implemented)
Note 1:	Maintain this bit clear to ensure upward
	compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

GENERAL PURPOSE REGISTER 2.2.1 FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

IGURE 2-3:	REGISTER	FILE MAP
	ILCOOL EI	

	F	lle	
٨	44	roc	•

F

File			File						
Address	(1)	(1)	Address						
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION_REG	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	PORTA	TRISA	85h						
06h	PORTB	TRISB	86h						
07h	DATACCP	TRISCCP	87h						
08h			88h						
09h			89h						
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	PIR1	PIE1	8Ch						
0Dh			8Dh						
0Eh	TMR1L	PCON	8Eh						
0Fh	TMR1H		8Fh						
10h	T1CON		90h						
11h	TMR2		91h						
12h	T2CON	PR2	92h						
13h			93h						
14h			94h						
15h	CCPR1L		95h						
16h	CCPR1H		96h						
17h	CCP1CON		97h						
18h			98h						
19h			99h						
1Ah			9Ah						
1Bh			9Bh						
1Ch			9Ch						
1Dh			9Dh						
1Eh	ADRES		9Eh						
1Fh	ADCON0	ADCON1	9Fh						
20h		General	A0h						
		Purpose							
	General Purpose	Registers 32 Bytes	BFh						
	Registers	JZ Dytes	C0h						
	96 Bytes		COII						
7Fh			FFh						
	Bank 0	Bank 1	I						
Un		ata memory loc	ations.						
	l as '0'.	.,	,						
Note 1: Not a physical register.									

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is give in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets (4)
Bank 0											
00h	INDF ⁽¹⁾	Addressing	gister)	0000 0000	0000 0000						
01h	TMR0	Timer0 Mod	lule's Registe	er						XXXX XXXX	uuuu uuuu
02h	PCL ⁽¹⁾	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	rr01 1xxx	rr0q quuu
04h	FSR ⁽¹⁾	Indirect Data	a Memory A	ddress Pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA ^(5,6)	_	—	(7)	PORTA Data	Latch when	written: POR	TA pins wher	n read	xx xxxx	xu uuuu
06h	PORTB ^(5,6)	PORTB Dat	a Latch whe	n written: PC	ORTB pins whe	n read				xxxx xxxx	uuuu uuuu
07h	DATACCP	(7)	(7)	(7)	(7)	(7)	DCCP	(7)	DT1CK	xxxx xxxx	xxxx xuxu
08h-09h	_	Unimpleme	nted							-	-
0Ah	PCLATH ^(1,2)	_	—	—	Write Buffer fo	or the upper	5 bits of the F	Program Cou	inter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—	—	_	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimpleme	nted							-	-
0Eh	TMR1L	Holding Reg	gister for the	Least Signifi	icant Byte of th	e 16-bit TMF	1 Register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	cant Byte of the	e 16-bit TMR	1 Register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 Mod	lule's Registe	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h-14h											
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	SB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (N	MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimplemented									-
1Eh	ADRES	A/D Result I	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, --- = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved. Always maintain these bits clear.

5: On any device Reset, these pins are configured as inputs.

6: This is the value that will be in the port output latch.

7: Reserved bits; Do Not Use.

PIC16C712/716

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets (4)
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this location	uses conten	ts of FSR to ac	ldress data r	nemory (not	a physical re	gister)	0000 0000	0000 0000
81h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL ⁽¹⁾	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
83h	STATUS ⁽¹⁾	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	rr01 1xxx	rr0q quuu
84h	FSR ⁽¹⁾	Indirect Dat	a Memory Ac	dress Pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	-	_	(7)	PORTA Data	Direction Re	gister			x1 1111	x1 1111
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111
87h	TRISCCP	(7)	(7)	(7)	(7)	(7)	TCCP	(7)	TT1CK	xxxx x1x1	xxxx x1x1
88h-89h	_	Unimpleme	nted							-	-
8Ah	PCLATH ^(1,2)	_	_	_	Write Buffer fo	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000
8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	_	—	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
8Dh	_	Unimpleme	nted							-	-
8Eh	PCON	_	_	_	_	—	_	POR	BOR	dd	uu
8Fh-91h	_	Unimpleme	nted							-	-
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h-9Eh	_	Unimpleme	nted							-	-
9Fh	ADCON1	_	_	—	_	—	PCFG2	PCFG1	PCFG0	000	000

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved. Always maintain these bits clear.

5: On any device Reset, these pins are configured as inputs.

6: This is the value that will be in the port output latch.

7: Reserved bits; Do Not Use.

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-6: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x					
GIE bit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR Reset 				
bit 7:	1 = Enabl		pt Enable nasked int errupts									
bit 6:	1 = Enabl	les all unn	terrupt En nasked pe ipheral int	ripheral in	terrupts							
bit 5:	TOIE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt											
bit 4:		les the RE	ternal Inte 80/INT exte 30/INT ext	ernal inter	rupt							
bit 3:	1 = Enabl	les the RE	nge Interr 8 port char 3 port cha	ige interru	pt							
bit 2:	1 = TMR0) register	ow Interrup has overflo did not ove	owed (mus	st be cleare	ed in softwa	are)					
bit 1:	1 = The F	RB0/INT e	ernal Inter xternal inte xternal inte	errupt occ	urred (mus	t be cleare	d in softwar	re)				
bit 0:	1 = At lea	st one of		B4 pins cl			e cleared in	software)				

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input
RA1/AN1	bit 1	TTL	Input/output or analog input
RA2/AN2	bit 2	TTL	Input/output or analog input
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF
			Input/output or external clock input for Timer0
RA4/T0CKI	bit 4	ST	Output is open drain type

TABLE 3-1: PORTA FUNCTIONS

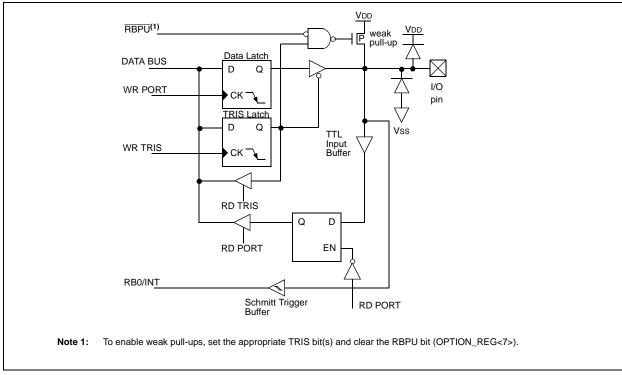
Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

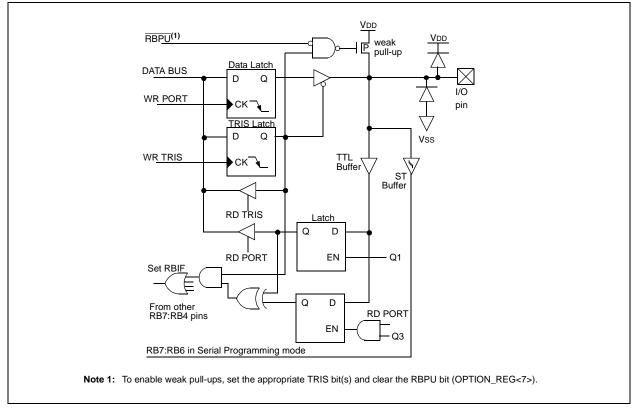
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA			_(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
85h	TRISA	_	—	_(1)	PORT	A Data	Direction	Register		11 1111	11 1111
9Fh	ADCON1	_					PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Reserved bits; Do Not Use.


3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input, (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output, (i.e., put the contents of the output latch on the selected pin).


BCF	STATUS, RPO	i
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB0 PIN

FIGURE 3-7: BLOCK DIAGRAM OF RB7:RB4 PINS

TABLE 3-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1/T1OS0/ T1CKI	bit 1	TTL/ST ⁽¹⁾	Input/output pin or Timer1 oscillator output, or Timer1 clock input. Internal software programmable weak pull-up. See Timer1 section for detailed operation.
RB2/T1OSI	bit 2	TTL/ST ⁽¹⁾	Input/output pin or Timer1 oscillator input. Internal software programmable weak pull-up. See Timer1 section for detailed operation.
RB3/CCP1	bit 3	TTL/ST ⁽¹⁾	Input/output pin or Capture 1 input, or Compare 1 output, or PWM1 output. Internal software programmable weak pull-up. See CCP1 section for detailed operation.
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or peripheral input.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TMR1 Module Mode	Clock Source	Control Bits	TMR1 Module Operation	PORTB<2:1> Operation			
Off	N/A	T1CON =xx 0x00	Off	PORTB<2:1> function as normal I/O			
Timer	Fosc/4	T1CON =xx 0x01	TMR1 module uses the main oscillator as clock source. TMR1ON can turn on or turn off Timer1.	PORTB<2:1> function as normal I/O			
Counter	External circuit	T1CON =xx 0x11 TR1SCCP =x-1	TMR1 module uses the external PORTB<2> functions as				
	Firmware	T1CON =xx 0x11 TR1SCCP =x-0	DATACCP<0> bit drives RB1/ T1OSO/T1CKI and produces the TMR1 clock source. TMR1ON can turn on or turn off Timer1. The DATACCP<0> bit, DT1CK, can read and write to the RB1/T1OSO/T1CKI pin.	result in the data latch, but not to the RB1/T1OSO/T1CKI pin. If the TMR1CS bit is cleared (TMR1 reverts to the timer mode), then pin PORTB<1> will be driven with the value in the data latch.			
	Timer1 oscillator	T1CON =xx 1x11	RB1/T1OSO/T1CKI and RB2/ T1OSI are configured as a 2 pin crystal oscillator. RB1/T1OSI/ T1CKI is the clock input for TMR1. TMR1ON can turn on or turn off Timer1. DATACCP<1> bit, DT1CK, always reads '0' as input and can not write to the RB1/T1OSO/T1CK1 pin.	PORTB<2:1> always read '0' when configured as inputs. If PORTB<2:1> are configured as outputs, reading PORTB<2:1> will read the data latches. Writ- ing to PORTB<2:1> will always store the result in the data latches, but not to the RB2/ T1OSI and RB1/T1OSO/T1CKI pins. If the TMR1CS and T1OSCEN bits are cleared (TMR1 reverts to the timer mode and TMR1 oscillator is disabled), then pin PORTB<2:1> will be driven with the value in the data latches.			

TABLE 5-1: TMR1 MODULE AND PORTB OPERATION

9.0 SPECIAL FEATURES OF THE CPU

The PIC16C712/716 devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection. These are:

- OSC Selection
- Reset:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code protection
- ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

These devices have a Watchdog Timer, which can be shut off only through Configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of Configuration bits are used to select various options.

Additional information on special features is available in the $PIC^{®}$ Mid-Range Reference Manual, (DS33023).

9.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

9.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON has two bits.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. If the BODEN Configuration bit is set, $\overline{\text{BOR}}$ is '1' on Power-on Reset. If the BODEN Configuration bit is clear, $\overline{\text{BOR}}$ is unknown on Power-on Reset. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (the BODEN Configuration bit is clear). BOR must then be set by the user and checked on subsequent Resets to see if it is clear, indicating a brown-out has occurred.

Bit 1 is $\overrightarrow{\text{POR}}$ (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 9-3:TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power	-up	Brown-out	Wake-up from	
Oscillator Configuration	PWRTE = 0PWRTE = 1		Brown-out	Sleep	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms	_	72 ms	—	

TABLE 9-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

TABLE 9-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
- PICSTART[®] Plus Development Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

11.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

11.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 family of microcontrollers and dsPIC30F family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

11.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, as well as internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

12.1 DC Characteristics: PIC16C712/716-04 (Commercial, Industrial, Extended) PIC16C712/716-20 (Commercial, Industrial, Extended)

DC CHA	DC CHARACTERISTICS			Standard Operating Con Operating temperature			$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D001 D001A	Vdd	Supply Voltage	4.0 4.5 VBOR*		5.5 5.5 5.5	V V V	XT, RC and LP osc mode HS osc mode BOR enabled ⁽⁷⁾
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5		V	
D003	VPOR	VDD Start Voltage to ensure inter- nal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details
D004* D004A*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 TBD	_	_	V/ms	PWRT enabled (PWRTE bit clear) PWRT disabled (PWRTE bit set) See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	—	4.35	V	BODEN bit set
D010 D013	IDD	Supply Current ^(2,5)	_	0.8 4.0	2.5 8.0	mA mA	Fosc = 4 MHz, VDD = 4.0V Fosc = 20 MHz, VDD = 4.0V
D020 D021 D021B	IPD	Power-down Current ^(3,5)	 	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, 0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C
D022* D022A*	ΔİWDT ΔİBOR	Module Differential Current ⁽⁶⁾ Watchdog Timer Brown-out Reset		6.0 TBD	20 200	μΑ μΑ	WDTE bit set, VDD = 4.0V BODEN bit set, VDD = 5.0V
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	KHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

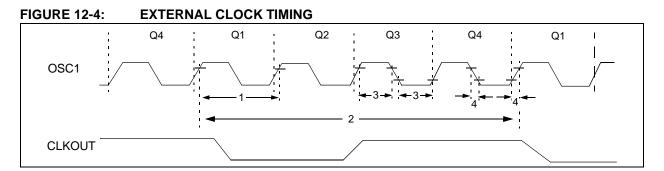
Note1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.


4: For RC Osc mode, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to this trip point.

12.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	_	4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
				—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

PIC16C712/716

TABLE 12-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓	_	75	200	ns	Note 1	
11*	TosH2ckH	OSC1¦ to CLKOUT¦		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT Ø to Port out valid		—	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	Tosc + 200		_	ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT {	0		_	ns	Note 1	
17*	TosH2ioV	OSC1¦ (Q1 cycle) to Port out val	id	—	50	150	ns	
18*	TosH2iol	OSC1¦ (Q2 cycle) to Port input	Standard	100		_	ns	
18A*		invalid (I/O in hold time)	Extended (LC)	200		_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O in	setup time)	0		_	ns	
20*	TioR	Port output rise time	Standard	_	10	40	ns	
20A*			Extended (LC)	—		80	ns	
21*	TioF	Port output fall time	Standard	—	10	40	ns	
21A*	1		Extended (LC)	—	—	80	ns	
22††*	TINP	INT pin high or low time		Тсү	-	—	ns	
23††*	Trbp	RB7:RB4 change INT high or low	v time	Тсү	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edge.

Note1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

13.0 PACKAGING INFORMATION

13.1 Package Marking Information

18-Lead PDIP

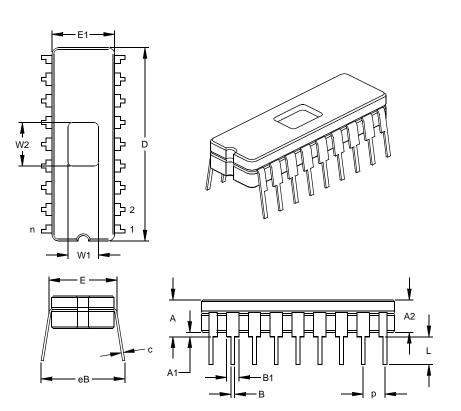
18-Lead CERDIP Windowed

18-Lead SOIC (.300")

20-Lead SSOP

Example

Example


Example

Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.				
Note:	: In the event the full Microchip part number cannot be marked on one line be carried over to the next line, thus limiting the number of ava characters for customer-specific information.					

18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				MILLIMETERS			
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		18			18		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.015	.023	.030	0.38	0.57	0.76	
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26	
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49	
Overall Length	D	.880	.900	.920	22.35	22.86	23.37	
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30	
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52	
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53	
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80	
Window Width	W1	.130	.140	.150	3.30	3.56	3.81	
Window Length	W2	.190	.200	.210	4.83	5.08	5.33	

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	2/99	This is a new data sheet. How- ever, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16C6X Data Sheet</i> , DS30234, and the <i>PIC16C7X</i> <i>Data Sheet</i> , DS30390.
В	9/05	Removed Preliminary Status.
С	1/13	Added a note to each package outline drawing.

APPENDIX B: CONVERSION CONSIDERATIONS

There are no previous versions of this device.

APPENDIX C: MIGRATION FROM BASE-LINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION_REG and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different Reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from Sleep through interrupt is added.

- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight-bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON STATUS register is added with a Poweron Reset Status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by Configuration Word bit BODEN. Brown-out Reset ensures the device is placed in a Reset condition if VDD dips below a fixed setpoint.

To convert code written for PIC16C5X to PIC16CXXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change Reset vector to 0000h.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820