E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c716t-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	PIC16C712/716		Pin	Buffer	
Name	DIP, SOIC	SSOP	Туре	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT RB0 INT	6	7	I/O I	TTL ST	Digital I/O External Interrupt
RB1/T1OSO/T1CKI RB1	7	8			
T1OSO T1CKI			I/O O	TTL	Digital I/O Timer1 oscillator output. Connects to
		_	I	ST	crystal in oscillator mode. Timer1 external clock input.
RB2/T1OSI RB2 T1OSI	8	9	I/O I	TTL —	Digital I/O Timer1 oscillator input. Connects to crystal in oscillator mode.
RB3/CCP1 RB3 CCP1	9	10	I/O I/O	TTL ST	Digital I/O Capture1 input, Compare1 output, PWM1 output.
RB4	10	12	I/O	TTL	Digital I/O Interrupt on change pin.
RB5	11	12	I/O	TTL	Digital I/O Interrupt on change pin.
RB6	12	13	I/O	TTL	Digital I/O Interrupt on change pin.
RB7	13	14	l I/O	ST TTL	ICSP programming clock. Digital I/O
			I/O	ST	Interrupt on change pin. ICSP programming data.
Vss	5	5, 6	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15, 16	Р	_	Positive supply for logic and I/O pins.

TABLE 1-1:	PIC16C712/716 PINOUT DESCRIPTION (CONTINUE)	D)
		-,

Legend: TTL = TTL-compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

OD = Open drain output

SM = SMBus compatible input. An external resistor is required if this pin is used as an output

NPU = N-channel pull-up PU = Weak internal pull-up

No-P diode = No P-diode to VDD AN = Analog input or output

I = input O = output

P = Power L = LCD Driver

2.2.2.1 Status Register

The STATUS register, shown in Figure 2-4, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any Status bits, see the "Instruction Set Summary."

- Note 1: These devices do not use bits IRP and RP1 (STATUS<7:6>). Maintain these bits clear to ensure upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 2-4: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit			
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR Reset										
bit 7:	1 = Bank 2	2, 3 (100h	-1FFh) – n	ot implem	ndirect addr ented, main ted, maintai	itain clear					
bit 6-5:	01 = Bank 00 = Bank Each bank	< 1 (80h-F < 0 (00h-7∣ < is 128 by	Fh) Fh)	·	ed for direct	addressin	g)				
bit 4:		ower-up,	CLRWDT in t occurred	struction,	or sleep ir	struction					
bit 3:		ower-up o	or by the C the SLEEP								
bit 2:		esult of an			peration is z						
bit 1:	1 = A carr	y-out from	the 4th lo	w order bit	v , SUBLW , S of the resu bit of the res	It occurred	, ,	r borrow the polarity is reversed)			
bit 0:	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred										
		erand. Fo						ling the two's complement of the either the high or low order bit of			

2.5 Indirect Addressing, INDF and FSR Registers

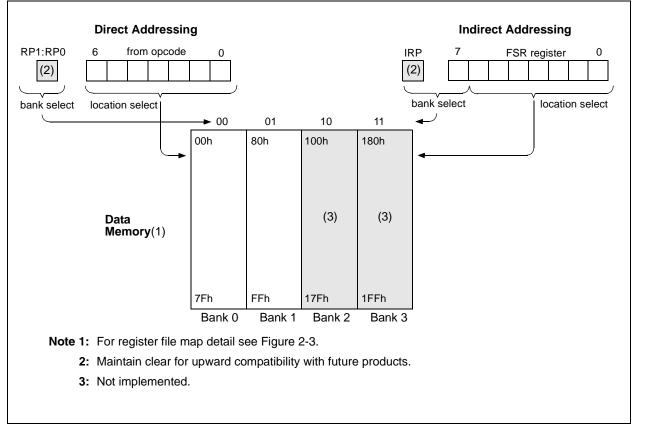
The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- · Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.


FIGURE 2-10: DIRECT/INDIRECT ADDRESSING

2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	CLRF INCF BTFSS	FSR INDF FSR FSR,4	;inc pointer ;all done?
CONTINUE	GOTO :	NEXT	;NO, clear next ;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-10. However, IRP is not used in the PIC16C712/716.

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 5-bit wide bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input, (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output, (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified, and then written to the port data latch. Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

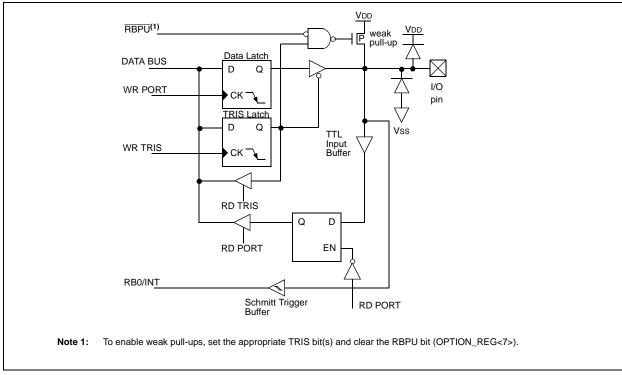
PORTA pins, RA3:0, are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are
	configured as analog inputs and read as
	ʻ0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS, RPO	;
CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	OxEF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<4> as outputs
BCF	STATUS, RPO	; Return to Bank 0


3.2 PORTB and the TRISB Register

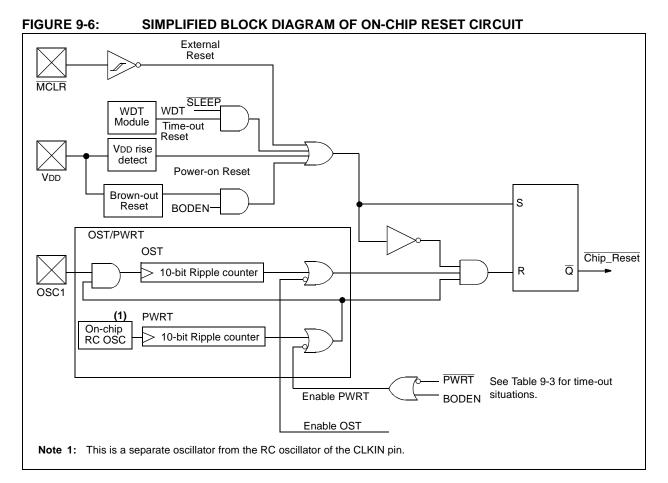
PORTB is an 8-bit wide bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input, (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output, (i.e., put the contents of the output latch on the selected pin).

BCF	STATUS, RPO	i
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB0 PIN

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	PORTB Data Direction Register								1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111


TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

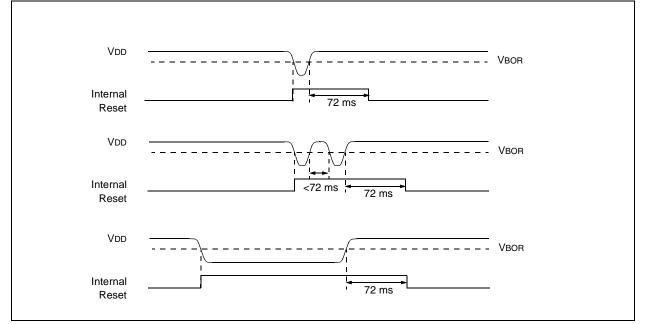

NOTES:

FIGURE 8-2: ADCON1 REGISTER (ADDRESS 9Fh)

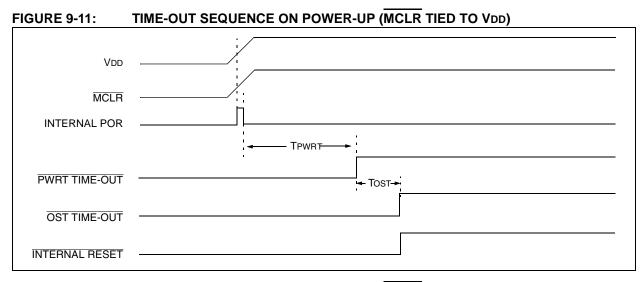
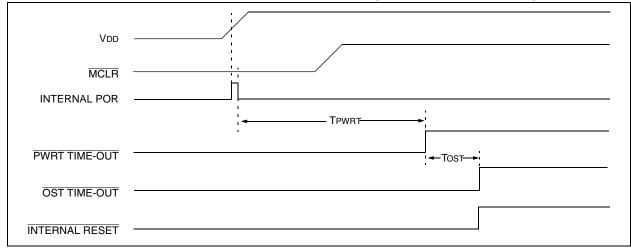
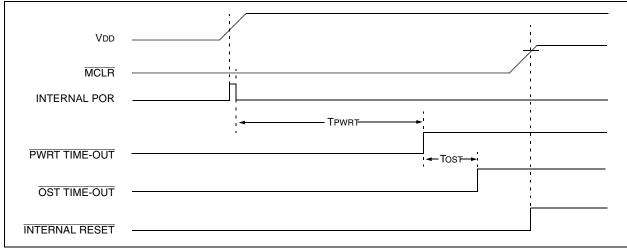




FIGURE 9-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 9-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

9.16 In-Circuit Serial Programming™

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details on serial programming, please refer to the In-Circuit Serial Programming[™] (ICSP[™]) Guide, (DS30277).

TABLE 10-2: PIC16CXXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Status	Notes		
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIEN	red fil	E REGISTER OPERATIONS	1	I					I
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS		1					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x		kkkk	C,DC,Z	
			1						

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
- PICSTART[®] Plus Development Programmer
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

11.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

11.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 family of microcontrollers and dsPIC30F family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

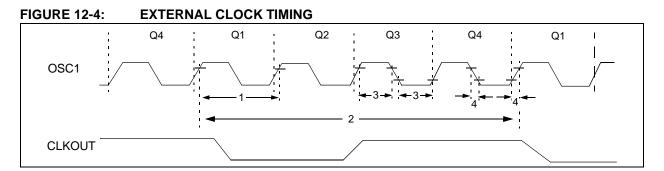
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:


- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

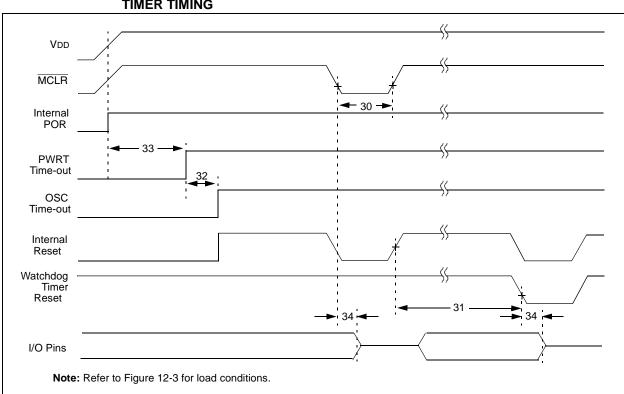
11.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, as well as internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

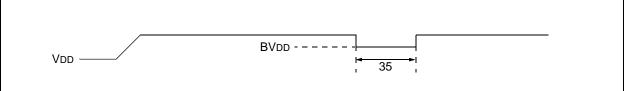
12.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	_	4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

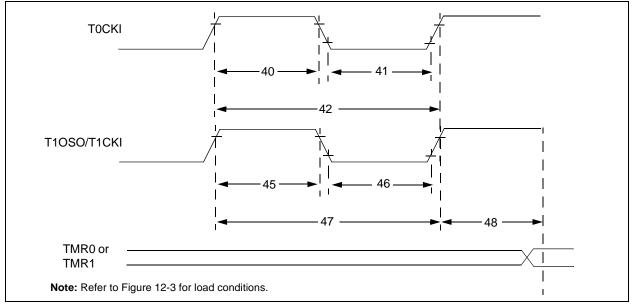
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 12-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc		—	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O High-impedance from MCLR Low or WDT Reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—		μs	$VDD \le BVDD (D005)$

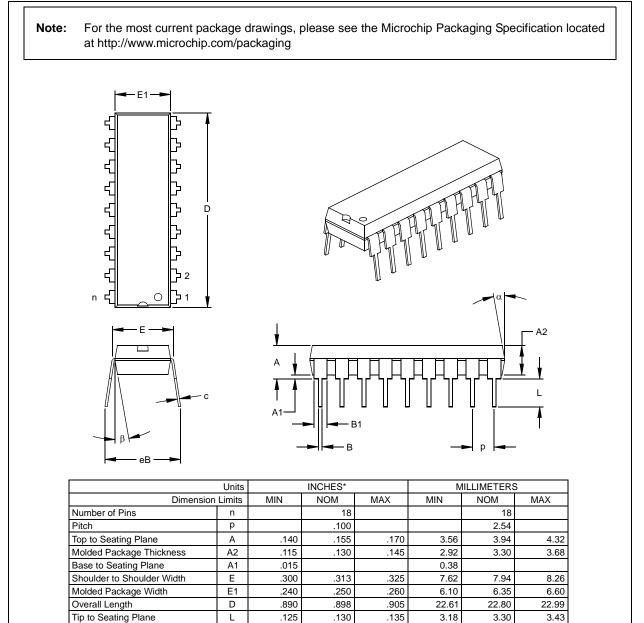
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	_	_	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	—	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, P	Prescaler = 1	0.5TCY + 20	-	_	ns	Must also meet
		-	Synchronous,	Standard	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended (LC)	25	—	—	ns	
			Asynchronous	Standard	30	—	—	ns	
				Extended (LC)	50	—	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F	rescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	Standard	15	—		ns	parameter 47
			Prescaler = 2,4,8	Extended (LC)	25	—	—	ns	
			Asynchronous	Standard	30	—		ns	
				Extended (LC)	50	—		ns	
47*	Tt1P	T1CKI input period	Synchronous	Standard	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	—	ns	N = prescale value (1, 2, 4, 8)
				Extended (LC)	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	Standard	60	-	—	ns	
				Extended (LC)	100	—		ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	—	200	kHz	
48	TCKEZtmr'	Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	—	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

13.2 Package Details

The following sections give the technical details of the packages.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

.008

.045

.014

.310

5

5

.012

.058

.018

.370

10

10

.015

.070

.022

.430

15

15

0.20

1.14

0.36

7.87

5

5

0.29

1.46

0.46

9.40

10

10

0.38

1.78

0.56

10.92

15

15

С

B1

В

eВ

α

β

δ

JEDEC Equivalent: MS-001

Drawing No. C04-007

Lead Thickness

Upper Lead Width

Lower Lead Width

Overall Row Spacing

Mold Draft Angle Top

Mold Draft Angle Bottom

* Controlling Parameter § Significant Characteristic

Interrupt Sources 51, 6	51
A/D Conversion Complete 4	7
Block Diagram6	51
Capture Complete (CCP)4	0
Compare Complete (CCP) 4	1
Interrupt-on-Change (RB7:RB4) 2	
RB0/INT Pin, External 6	52
TMR0 Overflow 30, 6	52
TMR1 Overflow 31, 3	
TMR2 to PR2 Match	37
TMR2 to PR2 Match (PWM) 36, 4	2
Interrupts, Context Saving During	
Interrupts, Enable Bits	
A/D Converter Enable (ADIE Bit) 1	6
CCP1 Enable (CCP1IE Bit) 16, 4	0
Global Interrupt Enable (GIE Bit) 15, 6	
Interrupt-on-Change (RB7:RB4) Enable	
(RBIE Bit) 15, 6	52
Peripheral Interrupt Enable (PEIE Bit) 1	
RB0/INT Enable (INTE Bit) 1	5
TMR0 Overflow Enable (T0IE Bit) 1	5
TMR1 Overflow Enable (TMR1IE Bit)1	6
TMR2 to PR2 Match Enable (TMR2IE Bit) 1	
Interrupts, Flag Bits	
A/D Converter Flag (ADIF Bit) 17, 4	7
CCP1 Flag (CCP1IF Bit) 17, 40, 4	1
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit) 15, 24, 6	52
RB0/INT Flag (INTF Bit) 1	5
TMR0 Overflow Flag (T0IF Bit) 15, 6	52
TMR1 Overflow Flag (TMR1IF Bit) 1	
TMR2 to PR2 Match Flag (TMR2IF Bit) 1	7

Μ

0

OPCODE Field Descriptions	67
OPTION_REG Register	12, 14
INTEDG Bit	14
PS2:PS0 Bits	14, 29
PSA Bit	14, 29
RBPU Bit	14
T0CS Bit	14, 29
T0SE Bit	14, 29
Oscillator Configuration	51, 53
HS	
LP	53, 58
RC	53, 54, 58
Selection (FOSC1:FOSC0 Bits)	52

XT 53		
Oscillator, Timer1 31	۱,	34
Oscillator, WDT		63
D		
Р		
Packaging		89
Details		90
Paging, Program Memory	Э.	19
PCON Register 18		
BOR Bit		18
POR Bit		18
PICSTART Plus Development Programmer		72
PIE1 Register		16
ADIE Bit		-
CCP1IE Bit		16
TMR1IE Bit		16
TMR2IE Bit	•	16
Pin F <u>unctio</u> ns		
MCLR/VPP		. 6
RA0/AN0		. 6
RA1/AN1		. 6
RA2/AN2		. 6
RA3/AN3/Vref		
RA4/T0CKI		-
RB0/INT		-
RB1		
RB2		
RB3		
RB4		
RB5	•••	. 7
RB6		. 7
RB7		. 7
Vdd		. 7
Vss		. 7
Pinout Descriptions		
PIC16C712/716 Pinout Description		6
PIR1 Register		
ADIF Bit		17
CCP1IF Bit		17
TMR1IF Bit		17
TMR2IF Bit		
Pointer, FSR	•	20
POR. See Power-on Reset		
PORTA		
Initialization		21
PORTA Register 1'	١.	21
RA3:RA0 Port Pins		
RA4/T0CKI Pin		22
TRISA Register		
PORTB	-,	21
Block Diagram of RB1/T1OSO/T1CKI Pin		24
Block Diagram of RB2/T10SI Pin	•	20
Block Diagram of RB3/CCP1 Pin		
Initialization		
PORTB Register 12		
Pull-up Enable (RBPU Bit)		14
RB0/INT Edge Select (INTEDG Bit)		14
RB0/INT Pin, External		62
RB3:RB0 Port Pins		
RB7:RB4 Interrupt-on-Change		
		62
RB7:RB4 Interrupt-on-Change Enable (RBIE Bit) 15		62
RB7:RB4 Interrupt-on-Change Enable (RBIE Bit) 15 RB7:RB4 Interrupt-on-Change Flag	5,	62 62
RB7:RB4 Interrupt-on-Change Enable (RBIE Bit) 15 RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) 15, 24	5, 1,	62 62 62
RB7:RB4 Interrupt-on-Change Enable (RBIE Bit) 15 RB7:RB4 Interrupt-on-Change Flag	5, 1,	62 62 62 26

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:		Total Pages Sent				
Fro	m: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
	lication (optional):					
Wo	uld you like a reply?YN					
Dev	rice: PIC16C712/716	Literature Number: DS41106C				
Que	ostions:					
1.	What are the best features of this document?					
2.	How does this document meet your hardware and soft	ware development needs?				
3.	3. Do you find the organization of this document easy to follow? If not, why?					
4	What additions to the document do you think would er	phance the structure and subject?				
4.						
5.	. What deletions from the document could be made without affecting the overall usefulness?					
6.	Is there any incorrect or misleading information (what	and where)?				
7.	How would you improve this document?					