

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

20000	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc712t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 **Data Memory Organization**

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
= 00 \rightarrow	Bank 0
= 01 \rightarrow	Bank 1
= 10 \rightarrow	Bank 2 (not implemented)
= 11 \rightarrow	Bank 3 (not implemented)
Note 1:	Maintain this bit clear to ensure upward
	compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

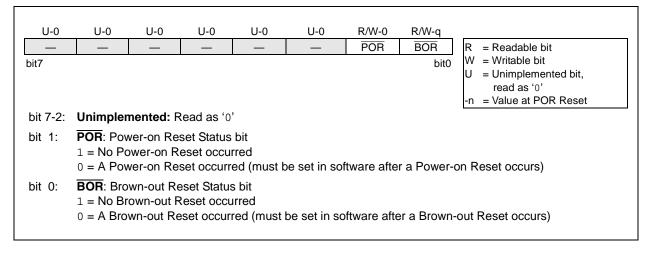
GENERAL PURPOSE REGISTER 2.2.1 FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

IGURE 2-3:	REGISTER	FILE MAP
	ILCOOL EI	

	F	lle	
٨	44	roc	•

F


File			File				
Address	(1)	(1)	Address				
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h				
01h	TMR0	OPTION_REG	81h				
02h	PCL	PCL	82h				
03h	STATUS	STATUS	83h				
04h	FSR	FSR	84h				
05h	PORTA	TRISA	85h				
06h	PORTB	TRISB	86h				
07h	DATACCP	TRISCCP	87h				
08h			88h				
09h			89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch	PIR1	PIE1	8Ch				
0Dh			8Dh				
0Eh	TMR1L	PCON	8Eh				
0Fh	TMR1H		8Fh				
10h	T1CON		90h				
11h	TMR2		91h				
12h	T2CON	PR2	92h				
13h			93h				
14h			94h				
15h	CCPR1L		95h				
16h	CCPR1H		96h				
17h	CCP1CON		97h				
18h			98h				
19h			99h				
1Ah			9Ah				
1Bh			9Bh				
1Ch			9Ch				
1Dh			9Dh				
1Eh	ADRES		9Eh				
1Fh	ADCON0	ADCON1	9Fh				
20h		General	A0h				
		Purpose					
	General Purpose	Registers 32 Bytes	BFh				
	Registers	JZ Dytes	C0h				
	96 Bytes		COII				
7Fh			FFh				
	Bank 0	Bank 1	I				
Un		ata memory loc	ations.				
read as '0'.							
Note 1: Not a physical register.							

2.2.2.6 PCON Register

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. These devices contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition. Note: If the BODEN Configuration bit is set, BOR is '1' on Power-on Reset. If the BODEN Configuration bit is clear, BOR is unknown on Power-on Reset. The BOR Status bit is a "don't care" and is

not necessarily predictable if the brown-out circuit is disabled (the BODEN Configuration bit is clear). BOR must then be set by the user and checked on subsequent resets to see if it is clear, indicating a brown-out has occurred.

FIGURE 2-9: PCON REGISTER (ADDRESS 8Eh)

2.5 Indirect Addressing, INDF and FSR Registers

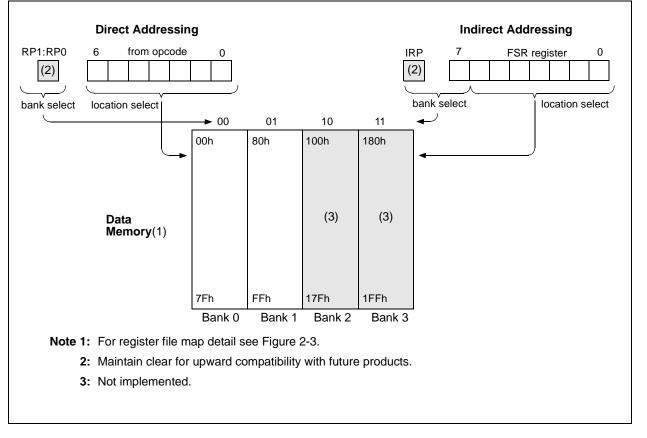
The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointe). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- · Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.


FIGURE 2-10: DIRECT/INDIRECT ADDRESSING

: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

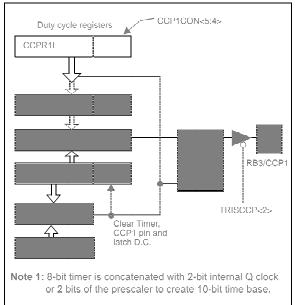
NEXT	MOVLW MOVWF CLRF INCF	FSR	<pre>;initialize pointer ; to RAM ;clear INDF register ;inc pointer</pre>
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-10. However, IRP is not used in the PIC16C712/716.

TMR1 Module Mode	Clock Source	Control Bits	TMR1 Module Operation	PORTB<2:1> Operation
Off	N/A	T1CON =xx 0x00	Off	PORTB<2:1> function as normal I/O
Timer	Fosc/4	T1CON =xx 0x01	TMR1 module uses the main oscillator as clock source. TMR1ON can turn on or turn off Timer1.	PORTB<2:1> function as normal I/O
Counter	External circuit	T1CON =xx 0x11 TR1SCCP =x-1	TMR1 module uses the external signal on the RB1/T1OSO/ T1CKI pin as a clock source. TMR1ON can turn on or turn off Timer1. DT1CK can read the signal on the RB1/T1OSO/ T1CKI pin.	PORTB<2> functions as normal I/O. PORTB<1> always reads '0' when configured as input. If PORTB<1> is configured as out- put, reading PORTB<1> will read the data latch. Writing to PORTB<1> will always store the
	Firmware	T1CON =xx 0x11 TR1SCCP =x-0	DATACCP<0> bit drives RB1/ T1OSO/T1CKI and produces the TMR1 clock source. TMR1ON can turn on or turn off Timer1. The DATACCP<0> bit, DT1CK, can read and write to the RB1/T1OSO/T1CKI pin.	result in the data latch, but not to the RB1/T1OSO/T1CKI pin. If the TMR1CS bit is cleared (TMR1 reverts to the timer mode), then pin PORTB<1> will be driven with the value in the data latch.
	Timer1 oscillator	T1CON =xx 1x11	RB1/T1OSO/T1CKI and RB2/ T1OSI are configured as a 2 pin crystal oscillator. RB1/T1OSI/ T1CKI is the clock input for TMR1. TMR1ON can turn on or turn off Timer1. DATACCP<1> bit, DT1CK, always reads '0' as input and can not write to the RB1/T1OSO/T1CK1 pin.	PORTB<2:1> always read '0' when configured as inputs. If PORTB<2:1> are configured as outputs, reading PORTB<2:1> will read the data latches. Writ- ing to PORTB<2:1> will always store the result in the data latches, but not to the RB2/ T1OSI and RB1/T1OSO/T1CKI pins. If the TMR1CS and T1OSCEN bits are cleared (TMR1 reverts to the timer mode and TMR1 oscillator is disabled), then pin PORTB<2:1> will be driven with the value in the data latches.

TABLE 5-1: TMR1 MODULE AND PORTB OPERATION

7.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISCCP<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force					
	the CCP1 PWM output latch to the default					
	low level. This is neither the PORTB I/O					
	data latch nor the DATACCP latch.					

Figure 7-5 shows a simplified block diagram of the CCP module in PWM mode.

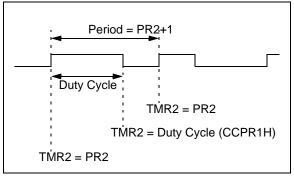

For a step by step procedure on how to set up the CCP module for PWM operation, see **Section 7.3.3** "**Set-Up for PWM Operation**".

FIGURE 7-5: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 7-6) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/ period).

FIGURE 7-6: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • Tosc • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 6.0						
	"Timer2 Module") is not used in the						
	determination of the PWM frequency. The						
	postscaler could be used to have a servo						
	update rate at a different frequency than						
	the PWM output.						

7.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

```
PWM duty cycle = (CCPR1L:CCP1CON<5:4>)•
Tos¢(TMR2 prescale value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the $PIC^{\textcircled{B}}$ Mid-Range Reference Manual, (DS33023).

PIC16C712/716

FIGURE 8-2: ADCON1 REGISTER (ADDRESS 9Fh)

FIGURE 9-1: CONFIGURATION WORD

													•	
CP1	CPO	CP1	CP0	CP1	CP0	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:CONFIG
bit13													bit0	Address2007h
bit 12	0 0 5	-4: CP1		Codo	Droto	otion k	oite (2)							
DILTO	J-0, J							orv (P	10.160	(716)				
	Code Protection for 2K Program memory (PIC16C716) 11 = Programming code protection off													
	10 = 0400h-07FFh code protected													
	01 = 0200h-07FFh code protected													
			= 0000			•								
bit 13	3-8, 5	-4:												
		Coc	le Prot	ection	for 1k	(Prog	ram mem	ory bi	ts (PIC	C16C712)				
		11:	= Prog	rammi	ing coo	de pro	tection of	f						
			•		•	•	tection of	f						
			= 0200			•								
		00 :	= 0000	h-03F	Fh coo	de-pro	tected							
bit 7		11			J. D	-l ()	.,							
bit 6	-						ı nable bit	(1)						
DIL U.	•		BOR 6					()						
		_	BOR											
bit 3		-				ner Fr	hable bit (1)						
511 0	•		PWRT		•									
		-	PWRT											
bit 2	:	WD	TE: W	atchdo	og Tim	er Ena	able bit							
		1 =	WDT (enable	ed									
		0 =	WDT (disable	əd									
bit 1-	-0:	FOS	SC1:F	OSC0:	: Oscill	ator S	election b	oits						
		11:	= RC c	oscillat	or									
		10:	= HS o	scillat	or									
		01:	= XT o	scillato	or									
		00:	= LP o	scillato	or									
Note	4.	Enabli	na Bro			st outo	matically	onabl			mor (D\//		diace of th	
note			-							vn-out Re		, .	uiess 01 (f	he value of bit PWRTE.
	2:												ntection s	cheme listed.
	۷.			1.01 0	Pairs	nave	o bo give	in une	Same					

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16CXXX can be operated in four different Oscillator modes. The user can program two Configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 9-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 9-3).

FIGURE 9-2:	CRYSTAL/CERAMIC
	RESONATOR OPERATION
	(HS, XT OR LP
	OSC CONFIGURATION)

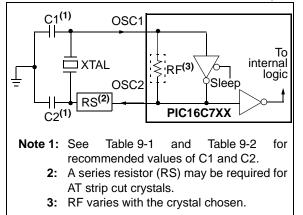
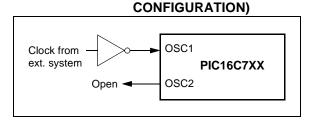
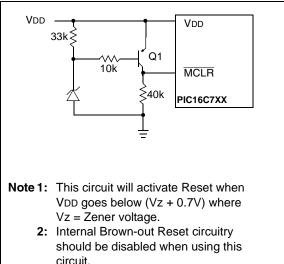



FIGURE 9-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1: CERAMIC RESONATORS

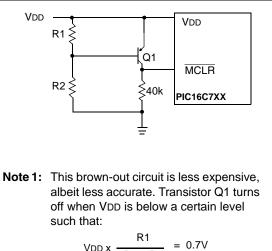
Ranges Tested:

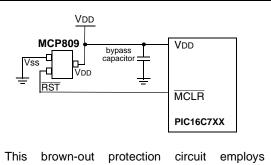
Mode	Freq	OSC1	OSC2				
XT	455 kHz	68-100 pF	68-100 pF				
	2.0 MHz	15-68 pF	15-68 pF				
	4.0 MHz	15-68 pF	15-68 pF				
HS	8.0 MHz	10-68 pF	10-68 pF				
	16.0 MHz	10-22 pF	10-22 pF				
These values are for design guidance only. See							
notes at bottom of page.							


TABLE 9-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	47-68 pF	47-68 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
These values are for design guidance only. See notes at bottom of page.						

Note 1:	Recommended values of C1 and C2 are
	identical to the ranges tested (Table 9-1).


- 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode, as well as XT mode to avoid overdriving crystals with low drive level specification.


EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

$$\frac{R1}{R1 + R2} = 0$$

- 2: Internal Brown-out Reset should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-10: EXTERNAL BROWN-OUT **PROTECTION CIRCUIT 3**

Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active Reset pins. There are 7 different trip point selections to accommodate 5V and 3V systems

9.8 **Time-out Sequence**

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 9-11, Figure 9-12, and Figure 9-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 9-13). This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Table 9-5 shows the Reset conditions for some Special Function Registers, while Table 9-6 shows the Reset conditions for all the registers.

9.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON has two bits.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. If the BODEN Configuration bit is set, $\overline{\text{BOR}}$ is '1' on Power-on Reset. If the BODEN Configuration bit is clear, $\overline{\text{BOR}}$ is unknown on Power-on Reset. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (the BODEN Configuration bit is clear). BOR must then be set by the user and checked on subsequent Resets to see if it is clear, indicating a brown-out has occurred.

Bit 1 is $\overrightarrow{\text{POR}}$ (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 9-3:TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power	-up	Brown-out	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	Sleep
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms		72 ms	—

TABLE 9-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

TABLE 9-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	0x 0000	xx xxxx	xu uuuu
PORTB ⁽⁵⁾	xxxx xxxx	uuuu uuuu	uuuu uuuu
DATACCP	x-x	u-u	u-u
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 -00x	0000 -00u	uuuu –uuu (1)
	0000	0000	uuuu (1)
PIR1	-0 0000	-0 0000	-u uuuu (1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
CCPR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
TRISCCP	xxxx x1x1	xxxx x1x1	xxxx xuxu
	0000	0000	uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PCON	0q	uq	uq
PR2	1111 1111	1111 1111	1111 1111
ADCON1	000	000	uuu

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16C712/716

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for Reset value for specific condition.

4: On any device Reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

9.13 Power-down Mode (Sleep)

Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, powerdown the A/D and the disable external clocks. Pull all I/ O pins, that are high-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

9.13.1 WAKE-UP FROM SLEEP

The device can wake up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some peripheral interrupts.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT Time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP Capture mode interrupt.
- 3. Special Event Trigger (Timer1 in Asynchronous mode using an external clock).

Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present.

11.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

11.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 family of microcontrollers and dsPIC30F family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB ASM30 Assembler, Linker and Librarian

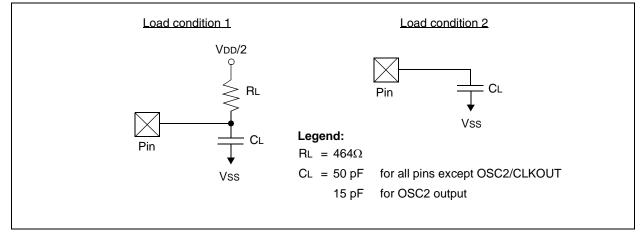
MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

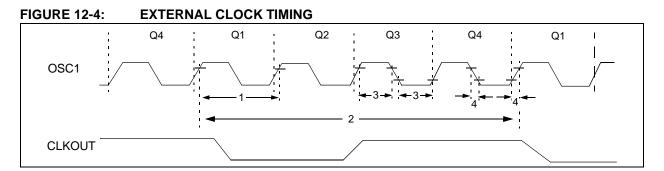
11.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, as well as internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.


12.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 12-1 apply to all timing specifications, unless otherwise noted. Figure 12-3 specifies the load conditions for the timing specifications.


TABLE 12-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Con	perating Conditions (unless otherwise stated)						
	Operating temperature	0°C	\leq Ta \leq	+70°C	for commercial			
		-40°C	\leq Ta \leq	+85°C	for industrial			
		-40°C	\leq Ta \leq	+125°C	for extended			
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 12.1 "DC Characteristics: PIC16C712/716-04 (Commercial, Industrial, Extended) PIC16C712/716-20 (Commercial,							
	Industrial, Extended)" and Section 12.2 "DC Characteristics: PIC16LC712/716-04 (Con							
	mercial, Industrial)".							
	LC parts operate for comm	nercial/in	dustrial t	emp's on	ly.			

FIGURE 12-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

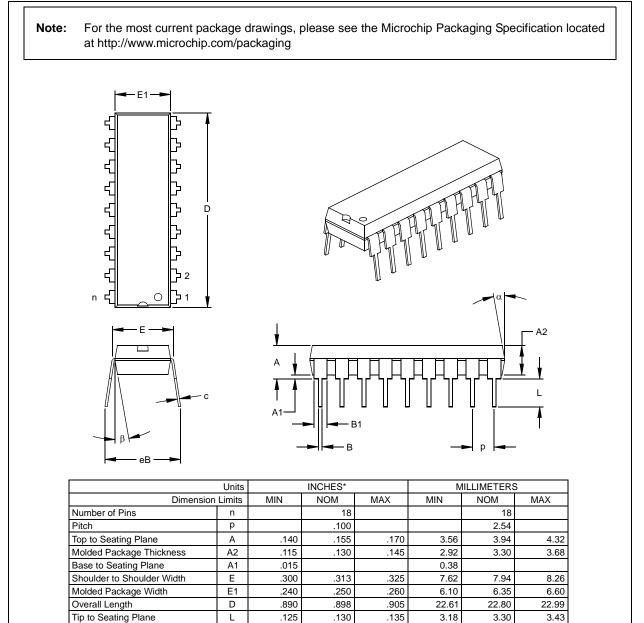
12.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	_	4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

13.2 Package Details

The following sections give the technical details of the packages.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

.008

.045

.014

.310

5

5

.012

.058

.018

.370

10

10

.015

.070

.022

.430

15

15

0.20

1.14

0.36

7.87

5

5

0.29

1.46

0.46

9.40

10

10

0.38

1.78

0.56

10.92

15

15

С

B1

В

eВ

α

β

δ

JEDEC Equivalent: MS-001

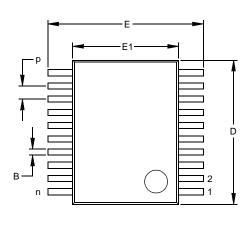
Drawing No. C04-007

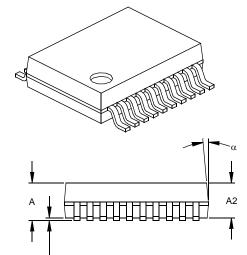
Lead Thickness

Upper Lead Width

Lower Lead Width

Overall Row Spacing


Mold Draft Angle Top


Mold Draft Angle Bottom

* Controlling Parameter § Significant Characteristic

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		20			20		
Pitch	р		.026			0.65		
Overall Height	А	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.278	.284	.289	7.06	7.20	7.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	¢	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	
* Controlling Decomptor								

A1

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

PIC16C712/716

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12