

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc716-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PIC [®] Mid-Range Reference Manual (DS33023)	PIC16C712	PIC16C716
Operating Frequency	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Program Memory (14-bit words)	1K	2К
Data Memory (bytes)	128	128
Interrupts	7	7
I/O Ports	Ports A,B	Ports A,B
Timers	3	3
Capture/Compare/PWM modules	1	1
8-bit Analog-to-Digital Module	4 input channels	4 input channels

PIC16C7XX FAMILY OF DEVICES

		PIC16C710	PIC16C71	PIC16C711	PIC16C712	PIC16C715	PIC16C716	PIC16C72A	PIC16C73B
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	1K	1K	2K	2K	2K	4K
	Data Memory (bytes)	36	36	68	128	128	128	128	192
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0 TMR1 TMR2	TMR0	TMR0 TMR1 TMR2	TMR0 TMR1 TMR2	TMR0 TMR1 TMR2
Peripherals	Capture/Compare/ PWM Module(s)	—	—	—	1	—	1	1	2
	Serial Port(s) (SPI™/I ² C™, USART)	—	—	—	—	—	—	SPI/I ² C	SPI/I ² C, USART
	A/D Converter (8-bit) Channels	4	4	4	4	4	4	5	5
	Interrupt Sources	4	4	4	7	4	7	8	11
	I/O Pins	13	13	13	13	13	13	22	22
	Voltage Range (Volts)	2.5-6.0	3.0-6.0	2.5-6.0	2.5-5.5	2.5-5.5	2.5-5.5	2.5-5.5	2.5-5.5
Features	In-Circuit Serial Programming™	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	_	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC

NOTES:

NOTES:

2.2.2.1 Status Register

The STATUS register, shown in Figure 2-4, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any Status bits, see the "Instruction Set Summary."

- Note 1: These devices do not use bits IRP and RP1 (STATUS<7:6>). Maintain these bits clear to ensure upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 2-4: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0 IRP	R/W-0R-1R-1R/W-xR/W-xRP1RP0 \overline{TO} \overline{PD} ZDCCbito							
Ditr	U = Unimplemented bit, read as '0' -n = Value at POR Reset							
bit 7:	 IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) – not implemented, maintain clear 0 = Bank 0, 1 (00h-FFh) – not implemented, maintain clear 							
bit 6-5:	bit 6-5: RP1:RP0 : Register Bank Select bits (used for direct addressing) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes Note: RP1 - not implemented maintain clear							
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT Time-out occurred							
bit 3:	PD : Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction							
bit 2:	Z : Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero							
bit 1:	DC : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result							
bit 0:	C : Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred							
	Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.							

Name	Bit#	Buffer	Function	
RA0/AN0	bit 0	TTL	Input/output or analog input	
RA1/AN1	bit 1	TTL	Input/output or analog input	
RA2/AN2	bit 2	TTL	Input/output or analog input	
RA3/AN3/VREF	bit 3	TTL	nput/output or analog input or VREF	
			nput/output or external clock input for Timer0	
RA4/T0CKI	bit 4	ST	Output is open drain type	

TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	—		_(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
85h	TRISA	_	_	_(1)	PORTA Data Direction Register11 111111 1111						
9Fh	ADCON1	—					PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Reserved bits; Do Not Use.

3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input, (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output, (i.e., put the contents of the output latch on the selected pin).

BCF	STATUS, RPO	;
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB0 PIN

FIGURE 3-5: BLOCK DIAGRAM OF RB2/T10SI PIN

FIGURE 3-6: BLOCK DIAGRAM OF RB3/CCP1 PIN

NOTES:

8.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the Charge Holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 8-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range Reference Manual, (DS33023). This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

FIGURE 8-4: ANALOG INPUT MODEL

9.0 SPECIAL FEATURES OF THE CPU

The PIC16C712/716 devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection. These are:

- OSC Selection
- Reset:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code protection
- ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

These devices have a Watchdog Timer, which can be shut off only through Configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of Configuration bits are used to select various options.

Additional information on special features is available in the $PIC^{\mbox{\tiny B}}$ Mid-Range Reference Manual, (DS33023).

9.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
W	xxxx xxxx	uuuu uuuu	นนนน นนนน	
INDF	N/A	N/A	N/A	
TMR0	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PCL	0000h	0000h	PC + 1 ⁽²⁾	
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)	
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTA ⁽⁴⁾	0x 0000	xx xxxx	xu uuuu	
PORTB ⁽⁵⁾	xxxx xxxx	uuuu uuuu	uuuu uuuu	
DATACCP	x-x	u-u	u-u	
PCLATH	0 0000	0 0000	u uuuu	
INTCON	0000 -00x	0000 -00u	uuuu -uuu (1)	
	0000	0000	uuuu (1)	
PIRI	-0 0000	-0 0000	-u uuuu (1)	
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1CON	00 0000	uu uuuu	uu uuuu	
TMR2	0000 0000	0000 0000	นนนน นนนน	
T2CON	-000 0000	-000 0000	-uuu uuuu	
CCPR1L	xxxx xxxx	นนนน นนนน	นนนน นนนน	
CCPR1H	xxxx xxxx	uuuu uuuu	นนนน นนนน	
CCP1CON	00 0000	00 0000	uu uuuu	
ADRES	xxxx xxxx	นนนน นนนน	นนนน นนนน	
ADCON0	0000 00-0	0000 00-0	uuuu uu-u	
OPTION_REG	1111 1111	1111 1111	นนนน นนนน	
TRISA	11 1111	11 1111	uu uuuu	
TRISB	1111 1111	1111 1111	uuuu uuuu	
TRISCCP	xxxx x1x1	xxxx x1x1	xxxx xuxu	
PIF1	0000	0000	uuuu	
	-0 0000	-0 0000	-u uuuu	
PCON	0q	uq	uq	
PR2	1111 1111	1111 1111	1111 1111	
ADCON1	000	000	uuu	

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16C712/716

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for Reset value for specific condition.

4: On any device Reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

11.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

11.8 MPLAB ICE 4000 High-Performance In-Circuit Emulator

The MPLAB ICE 4000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for high-end PIC MCUs and dsPIC DSCs. Software control of the MPLAB ICE 4000 In-Circuit Emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, and up to 2 Mb of emulation memory.

The MPLAB ICE 4000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

11.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

11.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

12.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1) (PDIP and SOIC)	
Total power dissipation (Note 1) (SSOP)	0.65W
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	
Maximum current sourced by PORTA and PORTB (combined)	

- **Note 1:** Power dissipation is calculated as follows: $Pdis = VDD \times \{IDD \sum IOH\} + \sum \{(VDD-VOH) \times IOH\} + \sum (VOI \times IOL)$ **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.
 - Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 12-2: PIC16LC712/716 VOLTAGE-FREQUENCY GRAPH, 0°C < TA < +70°C

12.4 AC (Timing) Characteristics

12.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1.	TppS2ppS
----	----------

2. TppS

Т			
F	Frequency	т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 12-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param	Sym.	Characteristic			Min.	Typ†	Max.	Units	Conditions
No.									
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5TCY + 20	—	—	ns	Must also meet parameter 42
				With Prescaler	10	—		ns	
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	—		ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	—	_	ns	
				With Prescaler	Greater of:	—		ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
			-		N				
45*	Tt1H	T1CKI High Time	Synchronous, F	rescaler = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous, Prescaler = 2,4,8	Standard	15	—		ns	parameter 47
				Extended (LC)	25	—	—	ns	
			Asynchronous	Standard	30	—		ns	
				Extended (LC)	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	Prescaler = 1	0.5TCY + 20	—	_	ns	Must also meet
			Synchronous,	Standard	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended (LC)	25	—	—	ns	
			Asynchronous	Standard	30	—	—	ns	
				Extended (LC)	50	—	_	ns	
47*	Tt1P	T1CKI input period	Synchronous	Standard	Greater of:	—	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				Extended (LC)	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	Standard	60	—	—	ns	
				Extended (LC)	100	—		ns	
	Ft1	Timer1 oscillator input frequency range			DC	—	200	kHz	
		(oscillator enabled by setting bit T1OSCEN)							
48	TCKEZtmr1	Delay from external clock edge to timer increment			2Tosc	—	7Tosc	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	2/99	This is a new data sheet. How- ever, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16C6X Data Sheet</i> , DS30234, and the <i>PIC16C7X</i> <i>Data Sheet</i> , DS30390.
В	9/05	Removed Preliminary Status.
С	1/13	Added a note to each package outline drawing.

APPENDIX B: CONVERSION CONSIDERATIONS

There are no previous versions of this device.

APPENDIX C: MIGRATION FROM BASE-LINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION_REG and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different Reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from Sleep through interrupt is added.

- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight-bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON STATUS register is added with a Poweron Reset Status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by Configuration Word bit BODEN. Brown-out Reset ensures the device is placed in a Reset condition if VDD dips below a fixed setpoint.

To convert code written for PIC16C5X to PIC16CXXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change Reset vector to 0000h.

TMR1L Register 11, 31
Plack Diagram 26
Postscaler, See Postscaler, Timer2
PR2 Register
Prescaler. See Prescaler, Timer2
T2CON Register 11, 36
TMR2 Register 11, 36
TMR2 to PR2 Match Enable (TMR2IE Bit) 16
TMR2 to PR2 Match Flag (TMR2IF Bit)
TMR2 to PR2 Match Interrupt 36, 37, 42
Timing Diagrams
Time-out Sequence on Power-up60
Wake-up from Sleep via Interrupt65
Timing Diagrams and Specifications
A/D Conversion
Brown-out Reset (BOR) 83
Capture/Compare/PWM (CCP) 85
CLKOUT and I/O82
External Clock81
Oscillator Start-up Timer (OST) 83
Power-up Timer (PWRT) 83
Reset
Timer0 and Timer1 84
Watchdog Timer (WDT) 83

W

W Register
Wake-up from Sleep 51
Wake-up from Sleep 64
Interrupts 58, 59
MCLR Reset 59
Timing Diagram 65
WDT Reset
Watchdog Timer (WDT) 51, 63
Block Diagram 63
Enable (WDTE Bit) 52, 63
Postscaler. See Postscaler, WDT
Programming Considerations 63
RC Oscillator 63
Time-out Period 63
Timing Diagram 83
WDT Reset, Normal Operation 54, 58, 59
WDT Reset, Sleep 54, 58, 59
WWW Address 101
WWW, On-Line Support 3

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PIC16C712/716 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device Fi	<u>-XX X (XX XXX</u> requency Temperature Package Pattern Range Range	Examples: a) PIC16C716 – 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device:	PIC16C712 ⁽¹⁾ , PIC16C712T ⁽²⁾ ;VDD range 4.0V to 5.5V PIC16LC712 ⁽¹⁾ , PIC16LC712T ⁽²⁾ ;VDD range 2.5V to 5.5V PIC16C716 ⁽¹⁾ , PIC16C716T ⁽²⁾ ;VDD range 4.0V to 5.5V PIC16LC716 ⁽¹⁾ , PIC16LC716T ⁽²⁾ ;VDD range 2.5V to 5.5V	 b) PIC16LC712 – 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits. c) PIC16C712 – 20I/P = Industrial temp., PDIP package, 20MHz, normal VDD limits.
Frequency Range:	04 = 4 MHz 20 = 20 MHz	Note 1: C = CMOS LC = Low Power CMOS 2: T = in tape and reel – SOIC, SSOP packages only
Temperature Range:	blank = 0°C to 70°C (Commercial) I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	 3: LC extended temperature device is not offered. 4: LC is not offered at 20 MHz
Package:	JW = Windowed CERDIP SO = SOIC P = PDIP SS = SSOP	
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)