

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K × 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc716t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Pin	PIC16C	712/716	Pin	Buffer	
Name	DIP, SOIC	SSOP	Туре	Туре	Description
MCLR/VPP MCLR	4	4	I	ST	Master clear (Reset) input. This pin is an active low Reset to the device.
Vpp			Р		Programming voltage input
OSC1/CLKIN OSC1	16	18	I	ST	Oscillator crystal input or external clock source input. ST buffer when config-
CLKIN			I	CMOS	External clock source input.
OSC2/CLKOUT OSC2	15	17	О	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator
CLKOUT			Ο	_	In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	17	19	I/O I	TTL Analog	Digital I/O Analog input 0
RA1/AN1 RA1 AN1	18	20	I/O I	TTL Analog	Digital I/O Analog input 1
RA2/AN2 RA2 AN2	1	1	I/O I	TTL Analog	Digital I/O Analog input 2
RA3/AN3/VREF RA3 AN3 VREF	2	2	I/O I I	TTL Analog Analog	Digital I/O Analog input 3 A/D Reference Voltage input.
RA4/T0CKI RA4	3	3	I/O	ST/OD	Digital I/O. Open drain when configured
тоскі			I	ST	Timer0 external clock input

TABLE 1-1: PIC16C712/716 PINOUT DESCRIPTION

 Legend:
 TTL = TTL-compatible input
 CMOS = CMOS compatible input or output

 ST = Schmitt Trigger input with CMOS levels
 OD = Open drain output

 SM = SMBus compatible input. An external resistor is required if this pin is used as an output

 NPU = N-channel pull-up
 PU = Weak internal pull-up

 No-P diode = No P-diode to VDD
 AN = Analog input or output

 I = input
 O = output

 P = Power
 L = LCD Driver

NOTES:

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontroller devices. Each block (Program Memory and Data Memory) has its own bus so that concurrent access can occur.

Additional information on device memory may be found in the $PIC^{\mbox{\tiny R}}$ Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16C712/716 has a 13-bit Program Counter (PC) capable of addressing an 8K x 14 program memory space. PIC16C712 has 1K x 14 words of program memory and PIC16C716 has 2K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wraparound.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PROGRAM MEMORY MAP AND STACK OF PIC16C716

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-6: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	R	= Readable bit
bit7	·						bit0	W U -n	 Writable bit Unimplemented bit, read as '0' Value at POR Reset
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	oal Interru les all unn les all inte	pt Enable nasked int errupts	bit errupts					
bit 6:	PEIE: Per 1 = Enabl 0 = Disab	ripheral In les all unn les all per	terrupt En nasked pe ipheral int	able bit ripheral in errupts	terrupts				
bit 5:	TOIE : TMI 1 = Enabl 0 = Disab	R0 Overflo les the TM les the TM	ow Interru 1R0 interru /IR0 interr	pt Enable l upt upt	bit				
bit 4:	IINTE: RE 1 = Enabl 0 = Disab	30/INT Ext les the RE les the RE	ternal Inte 80/INT exte 30/INT ext	rrupt Enab ernal interi ernal inter	le bit upt rupt				
bit 3:	RBIE: RB 1 = Enabl 0 = Disab	B Port Cha les the RE bles the RE	nge Interr 8 port char 3 port cha	upt Enable nge interru nge interru	e bit pt ıpt				
bit 2:	TOIF : TMI 1 = TMRC 0 = TMRC	R0 Overflo) register l) register o	ow Interrup has overflo did not ove	ot Flag bit owed (mus erflow	t be cleare	d in softwa	are)		
bit 1:	INTF : RB 1 = The R 0 = The R	0/INT Exte RB0/INT e RB0/INT e	ernal Inter xternal inter xternal inte	rupt Flag b errupt occu errupt did i	bit urred (must not occur	be cleare	d in softwa	re)	
bit 0:	RBIF : RB 1 = At lea 0 = None	Port Cha ist one of of the RB	nge Interr the RB7:R 7:RB4 pin	upt Flag bi B4 pins ch s have ch	t nanged stat anged state	e (must be	e cleared in	sof	tware)

FIGURE 3-5: BLOCK DIAGRAM OF RB2/T10SI PIN

FIGURE 3-6: BLOCK DIAGRAM OF RB3/CCP1 PIN

FIGURE 3-7: BLOCK DIAGRAM OF RB7:RB4 PINS

TABLE 3-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1/T1OS0/ T1CKI	bit 1	TTL/ST ⁽¹⁾	Input/output pin or Timer1 oscillator output, or Timer1 clock input. Internal software programmable weak pull-up. See Timer1 section for detailed operation.
RB2/T1OSI	bit 2	TTL/ST ⁽¹⁾	Input/output pin or Timer1 oscillator input. Internal software programmable weak pull-up. See Timer1 section for detailed operation.
RB3/CCP1	bit 3	TTL/ST ⁽¹⁾	Input/output pin or Capture 1 input, or Compare 1 output, or PWM1 output. Internal software programmable weak pull-up. See CCP1 section for detailed operation.
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or peripheral input.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

5.2 Timer1 Module and PORTB Operation

When Timer1 is configured as timer running from the main oscillator, PORTB<2:1> operate as normal I/O lines. When Timer1 is configured to function as a counter however, the clock source selection may affect the operation of PORTB<2:1>. Multiplexing details of the Timer1 clock selection on PORTB are shown in Figure 3-4 and Figure 3-5.

The clock source for Timer1 in the Counter mode can be from one of the following:

- 1. External circuit connected to the RB1/T1OSO/ T1CKI pin
- 2. Firmware controlled DATACCP<0> bit, DT1CKI
- 3. Timer1 oscillator

Table 5-1 shows the details of Timer1 mode selections, control bit settings, TMR1 and PORTB operations.

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISCCP<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
07h	DATACCP		—		_	—	DCCP		DT1CK	xxxx xxxx	xxxx xuxu
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	—	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
11h	TMR2	Timer2 Mo	dule's Regis	ter						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	ompare/PWI	V Register 1	(LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PWI	VI Register 1	(MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
87h	TRISCCP	—	—	—	—	—	TCCP	_	TT1CK	xxxx x1x1	xxxx x1x1
8Ch	PIE1	—	ADIE	_	—	—	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
92h	PR2	Timer2 Mo	dule's Perio	d Register						1111 1111	1111 1111

TABLE 7-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, — = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

FIGURE 9-1: CONFIGURATION WORD

					BODEN				WDTE	FOSC1	FOSCO	Register: CONFIG
			010		DODEN		010		WDIE	10001	10000	Address2007h
DIT13					(=)						DITU	
bit 13-8, 5	bit 13-8, 5-4: CP1:CP0: Code Protection bits ⁽²⁾											
	Code Pro	tection	for 2K	(Prog	ram mem	ory (P	IC16C	2716)				
	11 = Programming code protection off											
	10 = 0400h-07FFh code protected											
	01 = 0200	0h-07F	Fh coo	de pro	tected							
	00 = 0000	0h-07F	Fh coo	de pro	tected							
bit 13-8, 5	-4:											
	Code Pro	tection	for 1K	Prog	ram mem	ory bi	ts (PIC	C16C712)				
	11 = Prog	grammi	ing coo	de pro	tection of	f						
	10 = Prog	grammi	ing coo	de pro	tection of	f						
	01 = 0200	0h-03F	Fh coo	de-pro	tected							
	00 = 0000	Jh-03F	Fh coo	de-pro	tected							
hit 7.	Unimala			d	4,							
bit 6:	BODEN	Brown		u as	I Inabla bit	(1)						
DIL O.		onabla	-out Re			()						
	1 = BOR	dicable	iu Nd									
hit 3.		Dowor.	-un Tin		able hit (1)						
bit 5.	1 - PWR	T disah	-up m led									
	0 – PWR	T onah										
bit 2.		/atchdr	ncu na Tim	er En:	ahle hit							
Dit L.	1 = WDT	enable	bg inn bd									
	0 = WDT	disable	ed									
bit 1-0:	FOSC1:F	OSC0	: Oscill	ator S	Selection b	oits						
	11 = RC	oscillat	or									
	10 = HS c	oscillat	or									
	01 = XT c	oscillate	or									
	00 = LP c	scillato	or									
Noto 1:	Epobling Pr		It Poor		matically	onabl			mor (DM/		dloce of th	o value of hit DWDTE
NOLE I.	Ensure the				analically	nytim	o Brow	wei-up III	entis en	abled		
о.			up III	have		n the	e biov	value te e	nable the	abieu. 2 codo pr	otection co	homo listod
2.		1.040	pairs	nave	to be give	in the	same	value io e		e coue pro		

9.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (to a level of 1.5V-2.1V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (parameter D004). For a slow rise time, see Figure 9-5.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

FIGURE 9-5:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- te1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - **2:** R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - **3:** $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

9.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33), on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A Configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

9.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

9.7 Brown-Out Reset (BOR)

The PIC16C712/716 members have on-chip Brownout Reset circuitry. A Configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V, refer to VBOR parameter D005(VBOR) for a time greater than parameter (TBOR) in Table 12-6. The brown-out situation will reset the chip. A Reset is not guaranteed to occur if VDD falls below 4.0V for less than parameter (TBOR).

On any Reset (Power-on, Brown-out, Watchdog, etc.) the chip will remain in Reset until VDD rises above VBOR. The Power-up Timer will now be invoked and will keep the chip in Reset an additional 72 ms.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-Up Timer will execute a 72 ms Reset. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

For operations where the desired brown-out voltage is other than 4V, an external brown-out circuit must be used. Figure 9-8, 9-9 and 9-10 show examples of external brown-out protection circuits.

9.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON has two bits.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. If the BODEN Configuration bit is set, $\overline{\text{BOR}}$ is '1' on Power-on Reset. If the BODEN Configuration bit is clear, $\overline{\text{BOR}}$ is unknown on Power-on Reset. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (the BODEN Configuration bit is clear). BOR must then be set by the user and checked on subsequent Resets to see if it is clear, indicating a brown-out has occurred.

Bit 1 is $\overrightarrow{\text{POR}}$ (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 9-3:TIME-OUT IN VARIOUS SITUATIONS

Occillator Configuration	Power	-up	Brown out	Wake-up from
	PWRTE = 0	PWRTE = 1	Brown-out	Sleep
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	—	72 ms	—

TABLE 9-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD					
0	x	1	1	Power-on Reset				
0	x	0	x	Illegal, TO is set on POR				
0	x	x	0	legal, PD is set on POR				
1	0	1	1	Brown-out Reset				
1	1	0	1	WDT Reset				
1	1	0	0	WDT Wake-up				
1	1	u	u	MCLR Reset during normal operation				
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep				

TABLE 9-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

FIGURE 9-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 9-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

WAKE-UP USING INTERRUPTS 9.13.2

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

· If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the \overline{TO} bit will not be set and \overline{PD} bits will not be cleared.

• If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the \overline{PD} bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a **SLEEP** instruction.

4:

CLKOUT is not available in these osc modes, but shown here for timing reference.

9.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip	does	not	recommend	code
	protecting	windov	ved d	levices.	

ID Locations 9.15

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

			Standard Operating Conditions (unless otherwise stated)									
			Operating	temper	ature	0°C ≤	$TA \leq +70^{\circ}C$ for commercial					
					-4	0°C ≤	$TA \leq +85^{\circ}C$ for industrial					
			-40°C \leq TA \leq +125°C for extended									
DC CHA	RACTE	RISTICS	Operating	voltage	e VDD rang	e as de	escribed in DC spec Section 12.1					
			"DC Char	acteris	tics: PIC1	6C712	716-04 (Commercial, Industrial,					
			Extended) PIC16C712/716-20 (Commercial, Industrial,									
			Extended)" and Section 12.2 "DC Characteristics: PIC16LC712/									
	-		716-04 (C	ommer	cial, Indu	strial)"						
Param	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
No.												
		Output Low Voltage										
D080	Vol	I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C					
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C					
D083		OSC2/CLKOUT (RC Osc mode)	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C					
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C					
		Output High Voltage										
D090	Vон	I/O ports (Note 3)	VDD-0.7	-	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С					
			VDD-0.7	_	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С					
D092		OSC2/CLKOUT (RC Osc mode)	Vdd-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С					
			Vdd-0.7	_	_	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C					
D150*	Vod	Open-Drain High Voltage	—	_	8.5	V	RA4 pin					
		Capacitive Loading Specs on										
		Output Pins										
D100	Cosc2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1					
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	_	50	pF						

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC Oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC MCU be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 12-6: CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym.	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low	No Prescaler		0.5Tcy + 20	_		ns	
		time	With Prescaler	Standard	10	_	—	ns	
				Extended (LC)	20	_	—	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5TCY + 20	—	_	ns	
			With Prescaler	Standard	10	_	—	ns	
				Extended (LC)	20	_	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N			ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 output rise ti	me	Standard	—	10	25	ns	
				Extended (LC)	_	25	45	ns	
54*	TccF	CCP1 output fall time		Standard	_	10	25	ns	
				Extended (LC)	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-7:A/D CONVERTER CHARACTERISTICS:
PIC16C712/716-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C712/716-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC712/716-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
A01	NR	Resolution		—	_	8-bits	bit	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A02	Eabs	Total Absolute error		_	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A03	EIL	Integral linearity error	-	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF	
A04	Edl	Differential linearity error		-	_	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A05	Efs	Full scale error		-	—	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A06	EOFF	Offset error		-	—	< ± 1	LSb	VREF = VDD = 5.12V, VSS £ VAIN £ VREF
A10	—	Monotonicity		_	guaranteed (Note 3)	_	—	VSS £ VAIN £ VREF
A20	VREF	Reference voltage		2.5V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		-	_	10.0	kΩ	
A40	IAD	A/D conversion cur- rent (VDD)	Standard	—	180	_	μΑ	Average current consump-
			Extended (LC)	—	90	—	μA	tion when A/D is on. (Note 1)
A50	A50 IREF VREF input current (Note 2)		10	_	1000	μA μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 9.1 "Configuration Bits". During A/D Conversion	
								cycle

2: * These parameters are characterized but not tested.

3: † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

NOTES:

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description			
A	2/99	This is a new data sheet. How- ever, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16C6X Data Sheet</i> , DS30234, and the <i>PIC16C7X</i> <i>Data Sheet</i> , DS30390.			
В	9/05	Removed Preliminary Status.			
С	1/13	Added a note to each package outline drawing.			

APPENDIX B: CONVERSION CONSIDERATIONS

There are no previous versions of this device.

APPENDIX C: MIGRATION FROM BASE-LINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION_REG and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different Reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from Sleep through interrupt is added.

- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight-bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON STATUS register is added with a Poweron Reset Status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by Configuration Word bit BODEN. Brown-out Reset ensures the device is placed in a Reset condition if VDD dips below a fixed setpoint.

To convert code written for PIC16C5X to PIC16CXXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change Reset vector to 0000h.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
Fro	m: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Арр	lication (optional):						
Wo	uld you like a reply?YN						
Dev	rice: PIC16C712/716	Literature Number: DS41106C					
Que	estions:						
1.	What are the best features of this document?						
2	How does this document meet your bardware and soft	ware development needs?					
3.	Do you find the organization of this document easy to follow? If not, why?						
4	What additions to the document do you think would en	hance the structure and subject?					
ч.	what additions to the document do you think would er						
5.	What deletions from the document could be made with	nout affecting the overall usefulness?					
6	Le there any incorrect or micloading information (what	and whore)?					
0.	is there any incorrect or misleading mormation (what						
7.	How would you improve this document?						