

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	- ·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc716t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	9
3.0	I/O Ports	21
4.0	I/O Ports Timer0 Module	29
5.0	Timer1 Module	
6.0	Timer2 Module	36
7.0	Capture/Compare/PWM (CCP) Module(s)	39
8.0	Analog-to-Digital Converter (A/D) Module	45
9.0	Special Features of the CPU	51
10.0	Instruction Set Summary	67
11.0	Development Support.	69
12.0	Electrical Characteristics	73
13.0	Packaging Information	89
Revis	ion History	95
Conv	ersion Considerations	95
Migra	tion from Base-line to Mid-Range Devices	95
Index		97
On-Li	ne Support1	01
Read	ne Support1 er Response	02
	SC712/716 Product Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

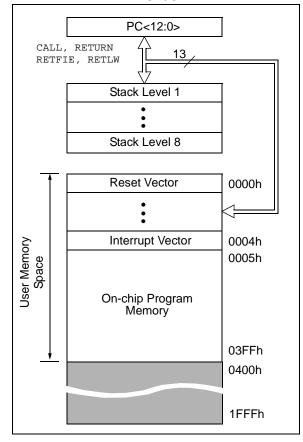
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

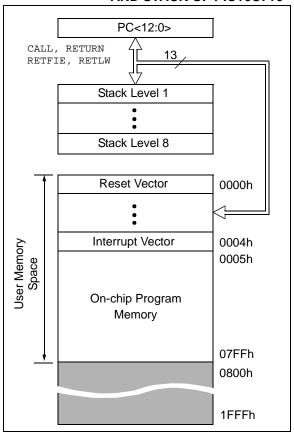
Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontroller devices. Each block (Program Memory and Data Memory) has its own bus so that concurrent access can occur.


Additional information on device memory may be found in the $PIC^{\mbox{\tiny R}}$ Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization


The PIC16C712/716 has a 13-bit Program Counter (PC) capable of addressing an 8K x 14 program memory space. PIC16C712 has 1K x 14 words of program memory and PIC16C716 has 2K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wraparound.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PROGRAM MEMORY MAP AND STACK OF PIC16C716

2.2 **Data Memory Organization**

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
= 00 \rightarrow	Bank 0
= 01 \rightarrow	Bank 1
= 10 \rightarrow	Bank 2 (not implemented)
= 11 \rightarrow	Bank 3 (not implemented)
Note 1:	Maintain this bit clear to ensure upward
	compatibility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

GENERAL PURPOSE REGISTER 2.2.1 FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

IGURE 2-3:	REGISTER	FILE MAP
	ILCOOL EI	

	F	lle	
٨	44	roc	•

F

File			File		
Address	(1)	(1)	Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION_REG	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h	DATACCP	TRISCCP	87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	PIR1	PIE1	8Ch		
0Dh			8Dh		
0Eh	TMR1L	PCON	8Eh		
0Fh	TMR1H		8Fh		
10h	T1CON		90h		
11h	TMR2		91h		
12h	T2CON	PR2	92h		
13h			93h		
14h			94h		
15h	CCPR1L		95h		
16h	CCPR1H		96h		
17h	CCP1CON		97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh	ADRES		9Eh		
1Fh	ADCON0	ADCON1	9Fh		
20h		General	A0h		
		Purpose			
	General Purpose	Registers 32 Bytes	BFh		
	Registers	JZ Dytes	C0h		
	96 Bytes		COII		
7Fh			FFh		
	Bank 0	Bank 1	I		
Un		ata memory loc	ations.		
	l as '0'.	.,	,		
Note 1: Not a physical register.					

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is give in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets (4)
Bank 0	Bank 0										
00h	INDF ⁽¹⁾	Addressing	this location	uses conten	ts of FSR to ac	ldress data r	nemory (not	a physical re	gister)	0000 0000	0000 0000
01h	TMR0	Timer0 Mod	lule's Registe	er						XXXX XXXX	uuuu uuuu
02h	PCL ⁽¹⁾	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	rr01 1xxx	rr0q quuu
04h	FSR ⁽¹⁾	Indirect Data	a Memory A	ddress Pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA ^(5,6)	_	—	(7)	PORTA Data	Latch when	written: POR	TA pins wher	n read	xx xxxx	xu uuuu
06h	PORTB ^(5,6)	PORTB Dat	a Latch whe	n written: PC	ORTB pins whe	n read				xxxx xxxx	uuuu uuuu
07h	DATACCP	(7)	(7)	(7)	(7)	(7)	DCCP	(7)	DT1CK	xxxx xxxx	xxxx xuxu
08h-09h	_	Unimpleme	nted							-	-
0Ah	PCLATH ^(1,2)	_	—	—	Write Buffer fo	or the upper	5 bits of the F	Program Cou	inter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—	—	_	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimpleme	nted							-	-
0Eh	TMR1L	Holding Reg	gister for the	Least Signifi	icant Byte of th	e 16-bit TMF	1 Register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	cant Byte of the	e 16-bit TMR	1 Register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 Mod	lule's Registe	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h-14h											
15h	CCPR1L	Capture/Compare/PWM Register1 (LSB)							xxxx xxxx	uuuu uuuu	
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)							xxxx xxxx	uuuu uuuu	
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimplemented							-	-	
1Eh	ADRES	A/D Result I	A/D Result Register xxxx								uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, --- = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

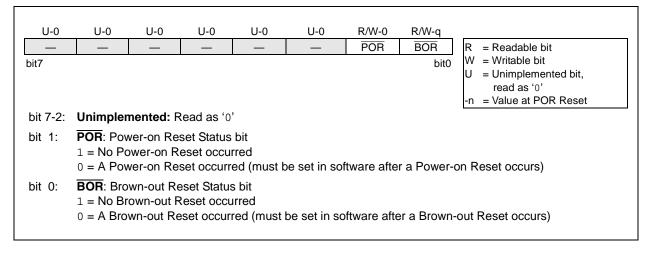
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved. Always maintain these bits clear.

5: On any device Reset, these pins are configured as inputs.

6: This is the value that will be in the port output latch.


7: Reserved bits; Do Not Use.

2.2.2.6 PCON Register

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. These devices contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition. Note: If the BODEN Configuration bit is set, BOR is '1' on Power-on Reset. If the BODEN Configuration bit is clear, BOR is unknown on Power-on Reset. The BOR Status bit is a "don't care" and is

not necessarily predictable if the brown-out circuit is disabled (the BODEN Configuration bit is clear). BOR must then be set by the user and checked on subsequent resets to see if it is clear, indicating a brown-out has occurred.

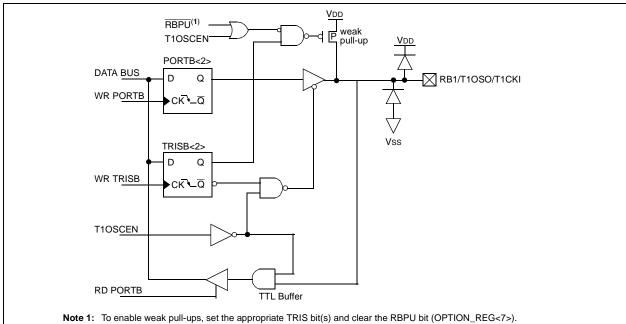
FIGURE 2-9: PCON REGISTER (ADDRESS 8Eh)

Name	Bit#	Buffer	unction	
RA0/AN0	bit 0	TTL	put/output or analog input	
RA1/AN1	bit 1	TTL	Input/output or analog input	
RA2/AN2	bit 2	TTL	put/output or analog input	
RA3/AN3/VREF	bit 3	TTL	put/output or analog input or VREF	
			Input/output or external clock input for Timer0	
RA4/T0CKI	bit 4	ST	Output is open drain type	

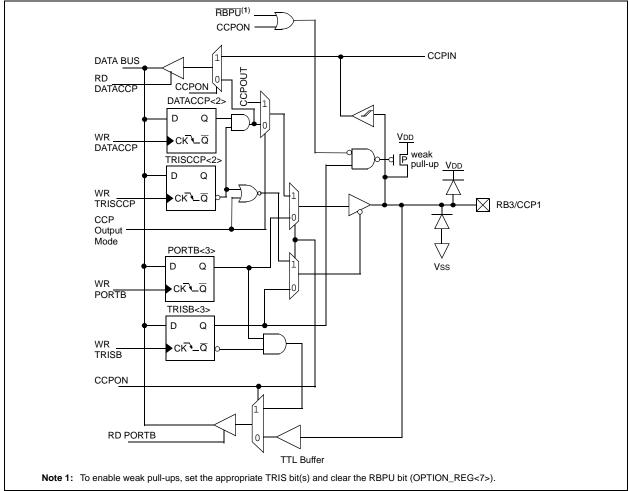
TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA			_(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
85h	TRISA	_	—	_(1)	PORT	A Data	Direction	Register		11 1111	11 1111
9Fh	ADCON1	_					PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.


Note 1: Reserved bits; Do Not Use.

PIC16C712/716

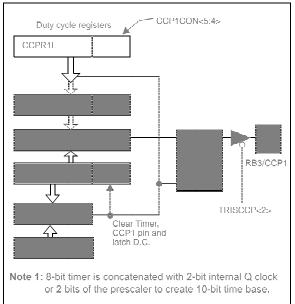
FIGURE 3-5: BLOCK DIAGRAM OF RB2/T10SI PIN

FIGURE 3-6: BLOCK DIAGRAM OF RB3/CCP1 PIN

TMR1 Module Mode	Clock Source	Control Bits	TMR1 Module Operation	PORTB<2:1> Operation
Off	N/A	T1CON =xx 0x00	Off	PORTB<2:1> function as normal I/O
Timer	Fosc/4	T1CON =xx 0x01	TMR1 module uses the main oscillator as clock source. TMR1ON can turn on or turn off Timer1.	PORTB<2:1> function as normal I/O
Counter	External circuit	T1CON =xx 0x11 TR1SCCP =x-1	TMR1 module uses the external signal on the RB1/T1OSO/ T1CKI pin as a clock source. TMR1ON can turn on or turn off Timer1. DT1CK can read the signal on the RB1/T1OSO/ T1CKI pin.	PORTB<2> functions as normal I/O. PORTB<1> always reads '0' when configured as input. If PORTB<1> is configured as out- put, reading PORTB<1> will read the data latch. Writing to PORTB<1> will always store the
	Firmware	T1CON =xx 0x11 TR1SCCP =x-0	DATACCP<0> bit drives RB1/ T1OSO/T1CKI and produces the TMR1 clock source. TMR1ON can turn on or turn off Timer1. The DATACCP<0> bit, DT1CK, can read and write to the RB1/T1OSO/T1CKI pin.	result in the data latch, but not to the RB1/T1OSO/T1CKI pin. If the TMR1CS bit is cleared (TMR1 reverts to the timer mode), then pin PORTB<1> will be driven with the value in the data latch.
	Timer1 oscillator	T1CON =xx 1x11	RB1/T1OSO/T1CKI and RB2/ T1OSI are configured as a 2 pin crystal oscillator. RB1/T1OSI/ T1CKI is the clock input for TMR1. TMR1ON can turn on or turn off Timer1. DATACCP<1> bit, DT1CK, always reads '0' as input and can not write to the RB1/T1OSO/T1CK1 pin.	PORTB<2:1> always read '0' when configured as inputs. If PORTB<2:1> are configured as outputs, reading PORTB<2:1> will read the data latches. Writ- ing to PORTB<2:1> will always store the result in the data latches, but not to the RB2/ T1OSI and RB1/T1OSO/T1CKI pins. If the TMR1CS and T1OSCEN bits are cleared (TMR1 reverts to the timer mode and TMR1 oscillator is disabled), then pin PORTB<2:1> will be driven with the value in the data latches.

TABLE 5-1: TMR1 MODULE AND PORTB OPERATION

7.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISCCP<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is neither the PORTB I/O
	data latch nor the DATACCP latch.

Figure 7-5 shows a simplified block diagram of the CCP module in PWM mode.

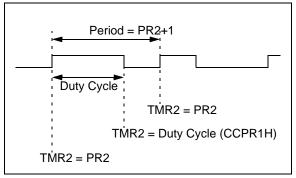

For a step by step procedure on how to set up the CCP module for PWM operation, see **Section 7.3.3** "**Set-Up for PWM Operation**".

FIGURE 7-5: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 7-6) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/ period).

FIGURE 7-6: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 6.0
	"Timer2 Module") is not used in the
	determination of the PWM frequency. The
	postscaler could be used to have a servo
	update rate at a different frequency than
	the PWM output.

7.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the $PIC^{\textcircled{B}}$ Mid-Range Reference Manual, (DS33023).

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISCCP<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

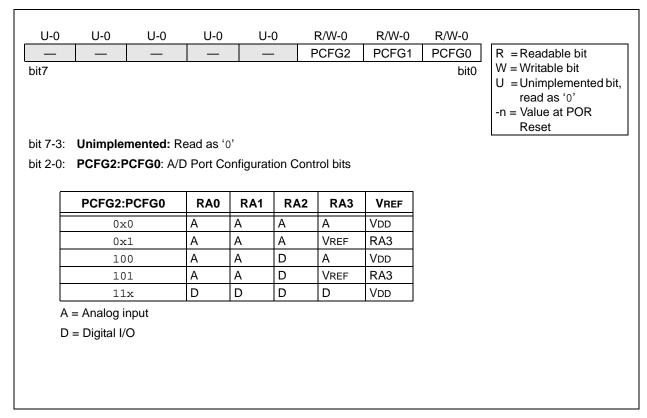
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
07h	DATACCP	—	_				DCCP		DT1CK	xxxx xxxx	xxxx xuxu
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
11h	TMR2	Timer2 Mc	dule's Regis	ter						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	ompare/PWI	V Register 1	(LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PWI	VI Register 1	(MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
87h	TRISCCP	—		_	_	_	TCCP	_	TT1CK	xxxx x1x1	xxxx x1x1
8Ch	PIE1	—	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
92h	PR2	Timer2 Mc	dule's Period	d Register						1111 1111	1111 1111

TABLE 7-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, — = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

7.4 CCP1 Module and PORTB Operation

When the CCP module is disabled, PORTB<3> operates as a normal I/O pin. When the CCP module is enabled, PORTB<3> operation is affected. Multiplexing details of the CCP1 module are shown on PORTB<3>, refer to Figure 3.6.


Table 7-5 below shows the effects of the CCP module operation on PORTB<3>

CCP1 Module Mode	Control Bits	CCP1 Module Operation	PORTB<3> Operation
Off	CCP1CON =xx 0000	Off	PORTB<3> functions as normal I/O.
Capture	CCP1CON =xx 01xx TRISCCP =1-x	The CCP1 module will capture an event on the RB3/CCP1 pin which is driven by an external circuit. The DCCP bit can read the signal on the RB3/CCP1 pin.	PORTB<3> always reads '0' when configured as input. If PORTB<3> is configured as output, reading PORTB<3> will read the data latch.
	CCP1CON =xx 01xx TRISCCP =0-x	The CCP1 module will capture an event on the RB3/CCP1 pin which is driven by the DCCP bit. The DCCP bit can read the signal on the RB3/CCP1 pin.	Writing to PORTB<3> will always store the result in the data latch, but it does not drive the RB3/CCP1 pin.
Compare	CCP1CON =xx 10xx TRISCCP =0-x	The CCP1 module produces an output on the RB3/CCP1 pin when a compare event occurs. The DCCP bit can read the signal on the RB3/CCP1 pin.	
PWM	CCP1CON =xx 11xx TRISCCP =0-x	The CCP1 module produces the PWM signal on the RB3/CCP1 pin. The DCCP bit can read the signal on the RB3/CCP1 pin.	

TABLE 7-5: CCP1 MODULE AND PORTB OPERATION

PIC16C712/716

FIGURE 8-2: ADCON1 REGISTER (ADDRESS 9Fh)

8.4 A/D Conversions

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

8.5 Use of the CCP Trigger

An A/D conversion can be started by the "Special Event Trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "Special Event Trigger" sets the GO/ DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "Special Event Trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA		_	(1)	RA4	RA3	RA2	RA1	RA0	xx xxxx	xu uuuu
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	—	—	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
1Eh	ADRES	A/D Resu	ult Registe	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
85h	TRISA	_	_	(1)	PORTA I	Data Dire	ction Registe	r		1 1111	1 1111
8Ch	PIE1	_	ADIE	_	—	—	CCP1IE	TMR2IE	TMR1IE	-0000	-0 0000
9Fh	ADCON1		_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

TABLE 8-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, — = unimplemented read as '0'. Shaded cells are not used for A/D conversion. **Note 1:** Reserved bits: Do Not Use.

DS41106C-page 50

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16CXXX can be operated in four different Oscillator modes. The user can program two Configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 9-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 9-3).

FIGURE 9-2:	CRYSTAL/CERAMIC
	RESONATOR OPERATION
	(HS, XT OR LP
	OSC CONFIGURATION)

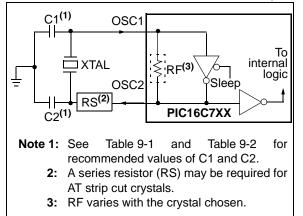
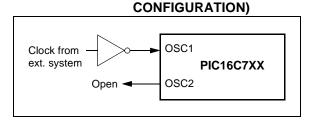



FIGURE 9-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1: CERAMIC RESONATORS

Ranges Tested:

Mode	Freq	OSC1	OSC2		
XT	455 kHz	68-100 pF	68-100 pF		
	2.0 MHz	15-68 pF	15-68 pF		
	4.0 MHz	15-68 pF	15-68 pF		
HS	8.0 MHz	10-68 pF	10-68 pF		
	16.0 MHz	10-22 pF	10-22 pF		
These values are for design guidance only. See					
not	es at bottom of	page.			

TABLE 9-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
XT	200 kHz	47-68 pF	47-68 pF	
	1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	15 pF	
	8 MHz	15-33 pF	15-33 pF	
	20 MHz	15-33 pF	15-33 pF	
These values are for design guidance only. See notes at bottom of page.				

Note 1:	Recommended values of C1 and C2 are
	identical to the ranges tested (Table 9-1).

- 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode, as well as XT mode to avoid overdriving crystals with low drive level specification.

9.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON has two bits.

Bit 0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. If the BODEN Configuration bit is set, $\overline{\text{BOR}}$ is '1' on Power-on Reset. If the BODEN Configuration bit is clear, $\overline{\text{BOR}}$ is unknown on Power-on Reset. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (the BODEN Configuration bit is clear). BOR must then be set by the user and checked on subsequent Resets to see if it is clear, indicating a brown-out has occurred.

Bit 1 is $\overrightarrow{\text{POR}}$ (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 9-3:TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power	-up	Brown-out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	Sleep	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms	_	72 ms	—	

TABLE 9-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or interrupt wake-up from Sleep

TABLE 9-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

12.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Ambient temperature under bias Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1) (PDIP and SOIC)	1.0W
Total power dissipation (Note 1) (SSOP)	
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Note the Decomposition is a structure of the set D is a function D is function	$\lambda(a, y) = \{a, y\} = \sum \{\lambda(a, y) = x\}$

- **Note 1:** Power dissipation is calculated as follows: $Pdis = VDD \times \{IDD \sum IOH\} + \sum \{(VDD-VOH) \times IOH\} + \sum (VOI \times IOL)$ **2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.
 - Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.2 DC Characteristics: PIC16LC712/716-04 (Commercial, Industrial)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)					
DC CHAI	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage	2.5 Vbor*	_	5.5 5.5	V V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5	_	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details
D004* D004A*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 TBD	_	_	V/ms	PWRT enabled (PWRTE bit clear) PWRT disabled (PWRTE bit set) See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	—	4.35	V	BODEN bit set
D010 D010A	IDD	Supply Current ^(2,5)	_	2.0 22.5	3.8 48	mA μA	XT, RC osc modes Fosc = 4 MHz, VDD = 3.0V (Note 4) LP osc mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D020 D021 D021A	IPD	Power-down Current ^(3,5)		7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D022* D022A*	ΔİWDT ΔİBOR	Module Differential Current ⁽⁶⁾ Watchdog Timer Brown-out Reset	_	6.0 TBD	20 200	μΑ μΑ	WDTE bit set, VDD = 4.0V BODEN bit set, VDD = 5.0V
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	KHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: This is the limit to which VDD can be lowered without losing RAM data.

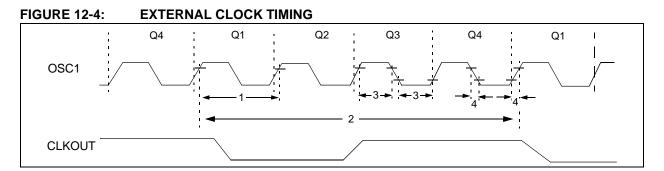
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\underline{OSC1} = external \text{ square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD,}$

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.


4: For RC Osc mode, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will operate correctly to this trip point.

12.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 12-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	_	4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES: