
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, Microwire, SmartCard, SPI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	26
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11u35fhi33-501y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M0 microcontroller

- Clock output function with divider that can reflect the crystal oscillator, the main clock, the IRC, or the watchdog oscillator.
- Power control:
 - Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, Power-down, and Deep power-down modes.
 - Power profiles residing in boot ROM provide optimized performance and minimized power consumption for any given application through one simple function call.
 - Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.
 - Processor wake-up from Deep-sleep and Power-down modes via reset, selectable GPIO pins, watchdog interrupt, or USB port activity.
 - ◆ Processor wake-up from Deep power-down mode using one special function pin.
 - Power-On Reset (POR).
 - Brownout detect with up to four separate thresholds for interrupt and forced reset.
- Unique device serial number for identification.
- Single 3.3 V power supply (1.8 V to 3.6 V).
- Temperature range –40 °C to +85 °C.
- Available as LQFP64, LQFP48, TFBGA48, and HVQFN33 packages.

3. Applications

- Consumer peripherals
- Medical

Industrial control

- Handheld scanners
- USB audio devices

4. Ordering information

Table 1.Ordering information

Type number	Package	Package									
	Name	Description	Version								
LPC11U34FHN33/311	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a								
LPC11U34FBD48/311	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2								
LPC11U34FHN33/421	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a								
LPC11U34FBD48/421	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2								
LPC11U35FHN33/401	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a								
LPC11U35FBD48/401	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2								
LPC11U35FBD64/401	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2								
LPC11U35FHI33/501	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 5 \times 5 \times 0.85 mm	n/a								
LPC11U35FET48/501	TFBGA48	plastic thin fine-pitch ball grid array package; 48 balls; body 4.5 \times 4.5 \times 0.7 mm	SOT1155-2								
LPC11U36FBD48/401	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2								

32-bit ARM Cortex-M0 microcontroller

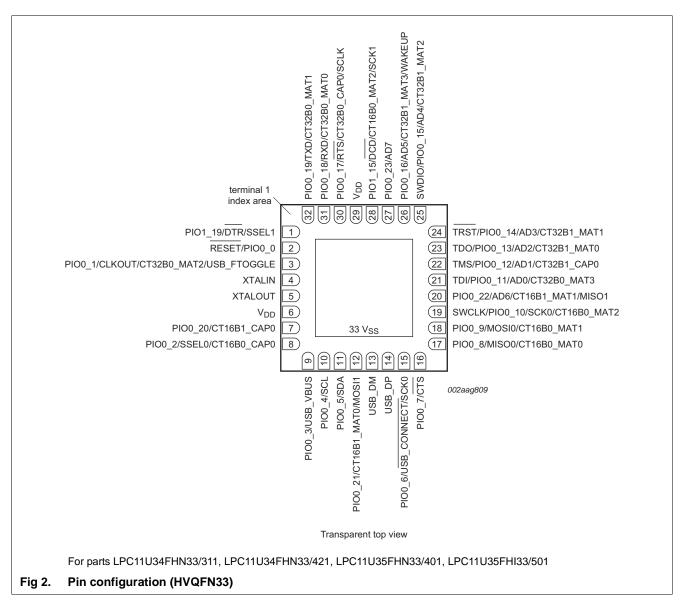
Type number	Package		
	Name	Description	Version
LPC11U36FBD64/401	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2
LPC11U37FBD48/401	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2
LPC11U37HFBD64/401	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2
LPC11U37FBD64/501	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2

Table 1. Ordering information ...continued

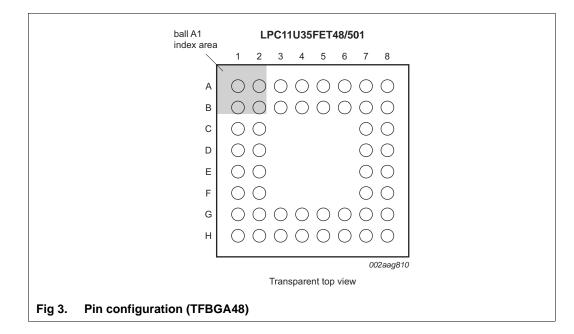
4.1 Ordering options

Table 2. Ordering options

Type number				B									
	Flash in kB	EEPROM in kB	SRAM0 in kB	USB SRAM in kB	SRAM1 in kB	Total SRAM in kB <u>[1]</u>	I/O Handler	USART	l ² C-bus FM+	SSP	USB device	ADC channels	GPIO pins
LPC11U34FHN33/311	40	4	8	-	-	8	no	1	1	2	1	8	26
LPC11U34FBD48/311	40	4	8	-	-	8	no	1	1	2	1	8	40
LPC11U34FHN33/421	48	4	8	2	-	10	no	1	1	2	1	8	26
LPC11U34FBD48/421	48	4	8	2	-	10	no	1	1	2	1	8	40
LPC11U35FHN33/401	64	4	8	2	-	10	no	1	1	2	1	8	26
LPC11U35FBD48/401	64	4	8	2	-	10	no	1	1	2	1	8	40
LPC11U35FBD64/401	64	4	8	2	-	10	no	1	1	2	1	8	54
LPC11U35FHI33/501	64	4	8	2	2 <u>[1]</u>	12	no	1	1	2	1	8	26
LPC11U35FET48/501	64	4	8	2	2 <u>[1]</u>	12	no	1	1	2	1	8	40
LPC11U36FBD48/401	96	4	8	2	-	10	no	1	1	2	1	8	40
LPC11U36FBD64/401	96	4	8	2	-	10	no	1	1	2	1	8	54
LPC11U37FBD48/401	128	4	8	2	-	10	no	1	1	2	1	8	40
LPC11U37HFBD64/401	128	4	8	2	2 <u>[2]</u>	10	yes	1	1	2	1	8	54
LPC11U37FBD64/501	128	4	8	2	2 <u>[1]</u>	12	no	1	1	2	1	8	54

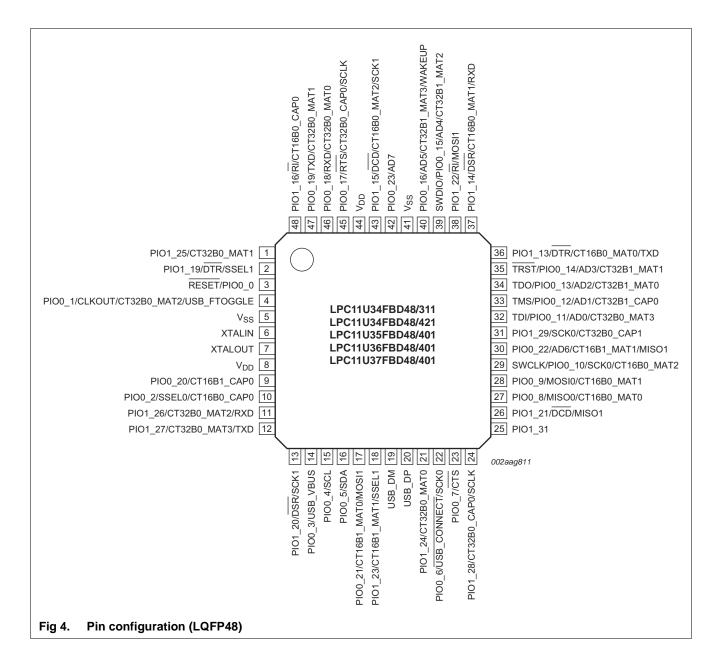

[1] For general-purpose use.

[2] For I/O Handler use only.


32-bit ARM Cortex-M0 microcontroller

6. Pinning information

6.1 Pinning



32-bit ARM Cortex-M0 microcontroller

Product data sheet

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

6.2 Pin description

<u>Table 3</u> shows all pins and their assigned digital or analog functions in order of the GPIO port number. The default function after reset is listed first. All port pins have internal pull-up resistors enabled after reset except for the true open-drain pins PIO0_4 and PIO0_5.

Every port pin has a corresponding IOCON register for programming the digital or analog function, the pull-up/pull-down configuration, the repeater, and the open-drain modes.

The USART, counter/timer, and SSP functions are available on more than one port pin.

Symbol	Pin HVQFN33	Pin TFBGA48	Pin LQFP48	Pin LQFP64		Reset state [1]	Туре	Description
RESET/PIO0_0	2	C1	3	4	[2]	I; PU	I	RESET — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states and processor execution to begin at address 0. This pin also serves as the debug select input. LOW level selects the JTAG boundary scan. HIGH level selects the ARM SWD debug mode.
								In deep power-down mode, this pin must be pulled HIGH externally. The RESET pin can be left unconnected or be used as a GPIO pin if an external RESET function is not needed and Deep power-down mode is not used.
						-	I/O	PIO0_0 — General purpose digital input/output pin.
PIO0_1/CLKOUT/ CT32B0_MAT2/ USB_FTOGGLE	3 C	C2	4	5	<u>[3]</u>	I; PU	I/O	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler or the USB device enumeration.
						-	0	CLKOUT — Clockout pin.
						-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
						-	0	USB_FTOGGLE — USB 1 ms Start-of-Frame signal.
PIO0_2/SSEL0/	8	F1	10	13	[3]	I; PU	I/O	PIO0_2 — General purpose digital input/output pin.
CT16B0_CAP0/IOH_0						-	I/O	SSEL0 — Slave select for SSP0.
						-	I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
						-	I/O	IOH_0 — I/O Handler input/output 0. LPC11U37HFBD64/401 only.
PIO0_3/USB_VBUS/ IOH_1	9	H2	14	19	[3]	I; PU	I/O	PIO0_3 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. A HIGH level during reset starts the USB device enumeration.
						-	I	USB_VBUS — Monitors the presence of USB bus power.
						-	I/O	IOH_1 — I/O Handler input/output 1. LPC11U37HFBD64/401 only.

Table 3. Pin description

32-bit ARM Cortex-M0 microcontroller

Table 3.Pin description

Symbol	Pin HVQFN33	Pin TFBGA48	Pin LQFP48	Pin LQFP64		Reset state [1]	Туре	Description
PIO1_28/CT32B0_CAP0/	-	H7	24	31	[3]	I; PU	I/O	PIO1_28 — General purpose digital input/output pin.
SCLK						-	I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
						-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO1_29/SCK0/	-	D7	31	41	[3]	I; PU	I/O	PIO1_29 — General purpose digital input/output pin.
CT32B0_CAP1						-	I/O	SCK0 — Serial clock for SSP0.
						-	I	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
PIO1_31	-	-	25	-	[3]	I; PU	I/O	PIO1_31 — General purpose digital input/output pin.
USB_DM	13	G5	19	25	[7]	F	-	USB_DM — USB bidirectional D- line.
USB_DP	14	H5	20	26	[7]	F	-	USB_DP — USB bidirectional D+ line.
XTALIN	4	D1	6	8	<u>[8]</u>	-	-	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	5	E1	7	9	[8]	-	-	Output from the oscillator amplifier.
V _{DD}	6; 29	B4; E2	8; 44	10; 33; 48; 58		-	-	Supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage.
V _{SS}	33	B5; D2	5; 41	7; 54		-	-	Ground.

Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;
 F = floating; If the pins are not used, tie floating pins to ground or power to minimize power consumption.

[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See <u>Figure 32</u> for the reset pad configuration.

[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 31).

[4] I²C-bus pin compliant with the I²C-bus specification for I²C standard mode, I²C Fast-mode, and I²C Fast-mode Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I²C lines. Open-drain configuration applies to all functions on this pin.

[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 31); includes high-current output driver.

[6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 31</u>); includes digital input glitch filter.

[7] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant.

[8] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). Leave XTALOUT floating.

32-bit ARM Cortex-M0 microcontroller

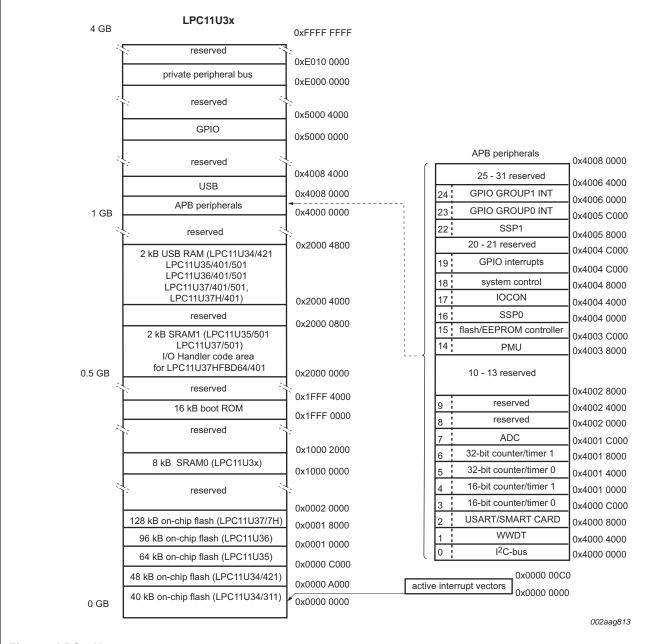


Fig 6. LPC11U3x memory map

7.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M0. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

7.6.1 Features

- Controls system exceptions and peripheral interrupts.
- In the LPC11U3x, the NVIC supports 24 vectored interrupts.

32-bit ARM Cortex-M0 microcontroller

application notes from NXP (see <u>http://www.LPCware.com</u>.) LPCXpresso, Keil, and IAR IDEs are supported. I/O Handler library code must be executed from the memory area 0x2000 0000 to 0x2000 07FF. This memory is not available for other use.

For application examples, see <u>Section 11.8 "I/O Handler software library applications"</u>. Each I/O Handler library uses a specific subset of I/O Handler pins and in some cases other pins and peripherals such as the counter/timers.

7.11 USART

The LPC11U3x contains one USART.

The USART includes full modem control, support for synchronous mode, and a smart card interface. The RS-485/9-bit mode allows both software address detection and automatic address detection using 9-bit mode.

The USART uses a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz.

7.11.1 Features

- Maximum USART data bit rate of 3.125 Mbit/s.
- 16 byte receive and transmit FIFOs.
- Register locations conform to 16C550 industry standard.
- Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
- Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values.
- Fractional divider for baud rate control, auto baud capabilities and FIFO control mechanism that enables software flow control implementation.
- Support for RS-485/9-bit mode.
- Support for modem control.
- Support for synchronous mode.
- Includes smart card interface.

7.12 SSP serial I/O controller

The SSP controllers operate on a SSP, 4-wire SSI, or Microwire bus. The controller can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bit to 16 bit of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.

7.12.1 Features

- Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)
- Compatible with Motorola SPI (Serial Peripheral Interface), 4-wire Texas Instruments SSI (Serial Synchronous Interface), and National Semiconductor Microwire buses
- Synchronous serial communication
- Master or slave operation

32-bit ARM Cortex-M0 microcontroller

- 8-frame FIFOs for both transmit and receive
- 4-bit to 16-bit frame

7.13 I²C-bus serial I/O controller

The LPC11U3x contain one I²C-bus controller.

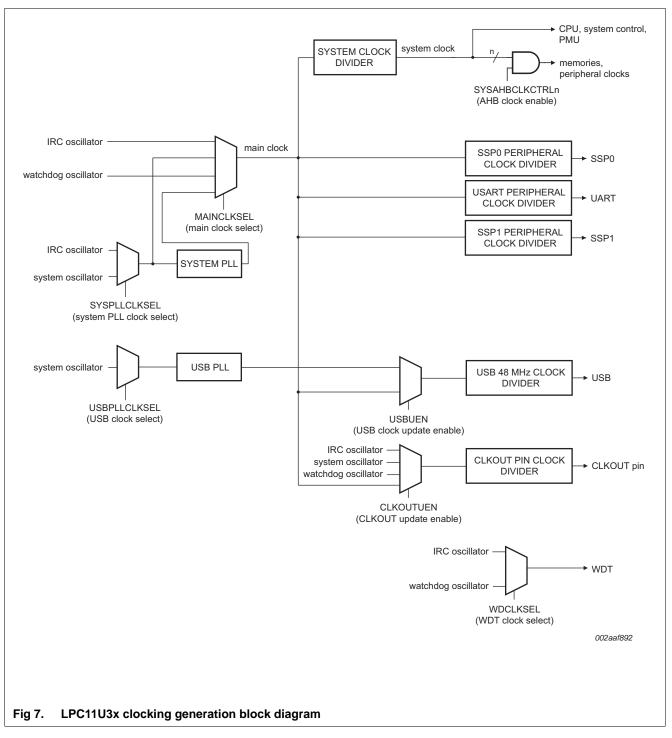
The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial CLock line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C-bus is a multi-master bus, and more than one bus master connected to the interface can be controlled the bus.

7.13.1 Features

- The I²C-interface is an I²C-bus compliant interface with open-drain pins. The I²C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- The I²C-bus controller supports multiple address recognition and a bus monitor mode.

7.14 10-bit ADC

The LPC11U3x contains one ADC. It is a single 10-bit successive approximation ADC with eight channels.


7.14.1 Features

- 10-bit successive approximation ADC.
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 V to V_{DD}.
- 10-bit conversion time \ge 2.44 μ s (up to 400 kSamples/s).
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition of input pin or timer match signal.
- Individual result registers for each ADC channel to reduce interrupt overhead.

NXP Semiconductors

LPC11U3x

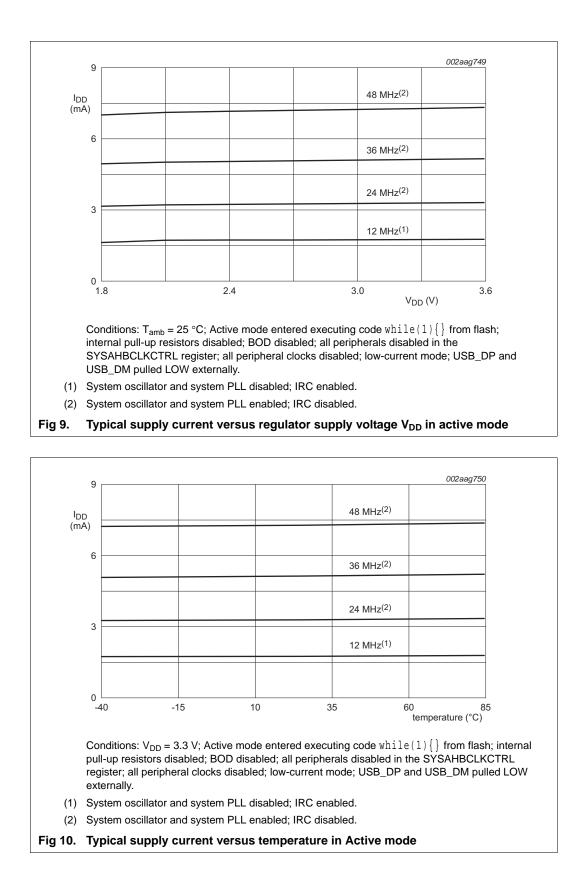
32-bit ARM Cortex-M0 microcontroller

7.18.1.1 Internal RC oscillator

The IRC can be used as the clock source for the WDT, and/or as the clock that drives the system PLL and then the CPU. The nominal IRC frequency is 12 MHz.

Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC11U3x use the IRC as the clock source. Software can later switch to one of the other available clock sources.

All information provided in this document is subject to legal disclaimers.


32-bit ARM Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Typ <u>[1]</u>	Max	Unit
I _{OL}	LOW-level output	V _{OL} = 0.4 V	4	-	-	mA
	current	$2.0~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V}$				
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	3	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V [13	<u>l</u> -	-	-45	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD} $ ^[13]	1 -	-	50	mA
I _{pd}	pull-down current	V ₁ = 5 V	10	50	150	μA
I _{pu}	pull-up current	$V_{I} = 0 V;$	-15	-50	-85	μA
		$2.0~V \leq V_{DD} \leq 3.6~V$				
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	-10	-50	-85	μA
		$V_{DD} < V_I < 5 V$	0	0	0	μA
High-dri	ve output pin (PIO0_7)	+		+		-
IIL	LOW-level input current	V _I = 0 V; on-chip pull-up resistor disabled	-	0.5	10	nA
I _{IH}	HIGH-level input current	$V_I = V_{DD}$; on-chip pull-down resistor disabled	-	0.5	10	nA
l _{oz}	OFF-state output current	V _O = 0 V; V _O = V _{DD} ; on-chip pull-up/down resistors disabled	-	0.5	10	nA
VI	input voltage	pin configured to provide a digital[11]function; $V_{DD} \ge 1.8 V$ [12]	1 0 1	-	5.0	V
		V _{DD} = 0 V	0	-	3.6	V
Vo	output voltage	output active	0	-	V _{DD}	V
VIH	HIGH-level input voltage		0.7V _{DD}	-	-	V
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage		0.4	-	-	V
V _{OH}	HIGH-level output	$2.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}; \text{ I}_{\text{OH}} = -20 \text{ mA}$	$V_{DD}-0.4$	-	-	V
	voltage	$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.5 V; I_{OH} = -12 mA	$V_{DD}-0.4$	-	-	V
V _{OL}	LOW-level output	$2.0 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}; \text{ I}_{\text{OL}} = 4 \text{ mA}$	-	-	0.4	V
	voltage	$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.0 V; I_{OL} = 3 mA	-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD} - 0.4 V;$ 2.5 V $\leq V_{DD} \leq 3.6 V$	20	-	-	mA
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.5 V	12	-	-	mA
I _{OL}	LOW-level output current	$V_{OL} = 0.4 \text{ V}$ 2.0 V $\leq V_{DD} \leq 3.6 \text{ V}$	4	-	-	mA
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$	3	-	-	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD} $ [13]		-	50	mA
I _{pd}	pull-down current	V _I = 5 V	10	50	150	μA

Table 5. Static characteristics ... continued

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$, unless otherwise specified.

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

- [2] The typical frequency spread over processing and temperature (T_{amb} = $-40 \degree C$ to +85 $\degree C$) is ±40 %.
- [3] See the LPC11Uxx user manual.

10.4 I/O pins

Table 14. Dynamic characteristics: I/O pins^[1]

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 3.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}.$

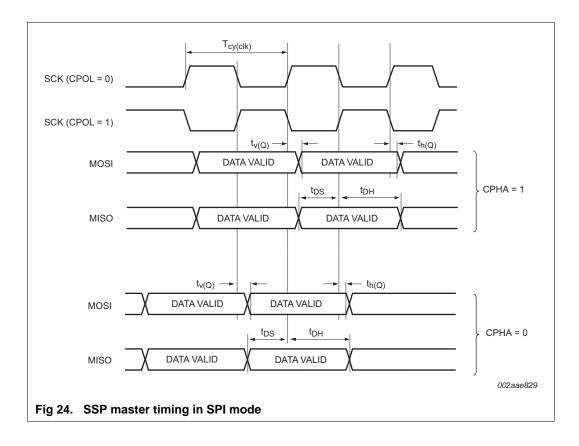
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	pin configured as output	3.0	-	5.0	ns
t _f	fall time	pin configured as output	2.5	-	5.0	ns

[1] Applies to standard port pins and RESET pin.

10.5 I²C-bus

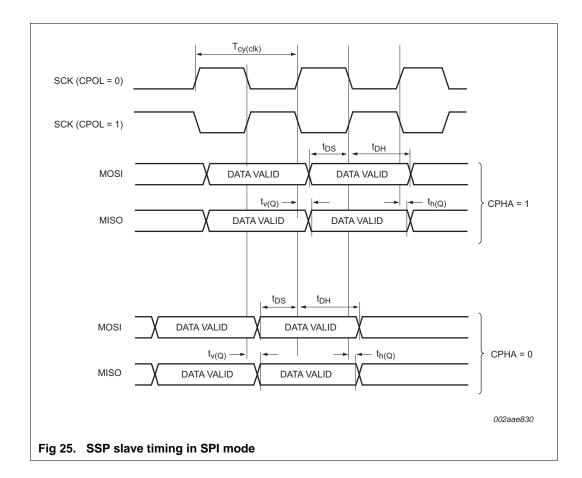
Table 15. Dynamic characteristic: I²C-bus pins^[1]

 $T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C.$

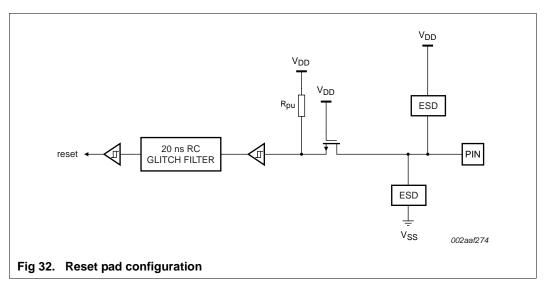

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock		Standard-mode	0	100	kHz
	frequency		Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[4][5][6][7]	of both SDA and SCL signals	-	300	ns
			Standard-mode			
			Fast-mode	$20 + 0.1 \times C_b$	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	V LOW period of the		Standard-mode	4.7	-	μS
SCL clock		Fast-mode	1.3	-	μS	
			Fast-mode Plus	0.5	-	μS
t _{HIGH}	HIGH period of the		Standard-mode	4.0	-	μS
	SCL clock		Fast-mode	0.6	-	μS
			Fast-mode Plus	0.26	-	μS
t _{HD;DAT}	data hold time	[3][4][8]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus	0	-	μS
t _{SU;DAT}	data set-up time	[9][10]	Standard-mode	250	-	ns
			Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns

[1] See the I²C-bus specification UM10204 for details.

[2] Parameters are valid over operating temperature range unless otherwise specified.

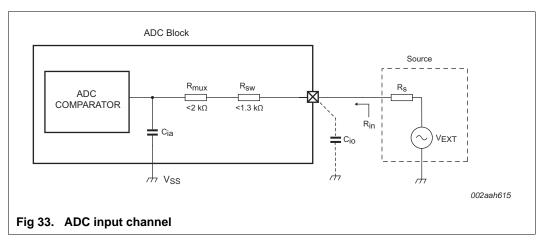

- [3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
- [4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- [5] C_b = total capacitance of one bus line in pF.
- [6] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.

32-bit ARM Cortex-M0 microcontroller



51 of 77

32-bit ARM Cortex-M0 microcontroller


32-bit ARM Cortex-M0 microcontroller

11.5 Reset pad configuration

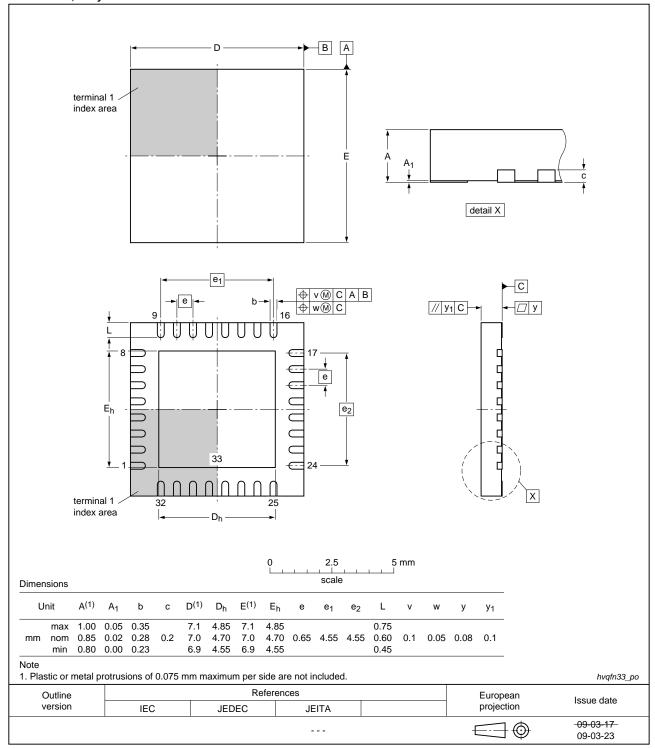
11.6 ADC effective input impedance

A simplified diagram of the ADC input channels can be used to determine the effective input impedance seen from an external voltage source. See <u>Figure 33</u>.

The effective input impedance, R_{in}, seen by the external voltage source, V_{EXT}, is the parallel impedance of ((1/f_s x C_{ia}) + R_{mux} + R_{sw}) and (1/f_s x C_{io}), and can be calculated using Equation 1 with

fs = sampling frequency

Cia = ADC analog input capacitance


R_{mux} = analog mux resistance

R_{sw} = switch resistance

Cio = pin capacitance

$$R_{in} = \left(\frac{I}{f_s \times C_{ia}} + R_{mux} + R_{sw}\right) \| \left(\frac{I}{f_s \times C_{io}}\right)$$
(1)

32-bit ARM Cortex-M0 microcontroller

HVQFN33: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm

Fig 35. Package outline HVQFN33 (7 x 7 x 0.85 mm)

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M0 microcontroller

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2017. All rights reserved.

32-bit ARM Cortex-M0 microcontroller

15	References
16	Revision history 73
17	Legal information 74
17.1	Data sheet status
17.2	Definitions74
17.3	Disclaimers
17.4	Trademarks 75
18	Contact information 75
19	Contents 76

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2017.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 8 February 2017 Document identifier: LPC11U3X