

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, Microwire, SmartCard, SPI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11u37fbd48-501

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 4 kB on-chip EEPROM data memory; byte erasable and byte programmable; on-chip API support.
- Up to 12 kB SRAM data memory.
- ◆ 16 kB boot ROM.
- In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software.
- ROM-based USB drivers. Flash updates via USB supported.
- ROM-based 32-bit integer division routines.
- Debug options:
 - Standard JTAG (Joint Test Action Group) test interface for BSDL (Boundary Scan Description Language).
 - Serial Wire Debug.
- Digital peripherals:
 - ◆ Up to 54 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors, repeater mode, and open-drain mode.
 - Up to 8 GPIO pins can be selected as edge and level sensitive interrupt sources.
 - Two GPIO grouped interrupt modules enable an interrupt based on a programmable pattern of input states of a group of GPIO pins.
 - High-current source output driver (20 mA) on one pin.
 - High-current sink driver (20 mA) on true open-drain pins.
 - ◆ Four general purpose counter/timers with a total of up to 8 capture inputs and 13 match outputs.
 - Programmable Windowed WatchDog Timer (WWDT) with a dedicated, internal low-power WatchDog Oscillator (WDO).
- Analog peripherals:
 - 10-bit ADC with input multiplexing among eight pins.
- Serial interfaces:
 - USB 2.0 full-speed device controller.
 - USART with fractional baud rate generation, internal FIFO, a full modem control handshake interface, and support for RS-485/9-bit mode and synchronous mode. USART supports an asynchronous smart card interface (ISO 7816-3).
 - ◆ Two SSP controllers with FIFO and multi-protocol capabilities.
 - ◆ I²C-bus interface supporting the full I²C-bus specification and Fast-mode Plus with a data rate of up to 1 Mbit/s with multiple address recognition and monitor mode.
- I/O Handler for hardware emulation of serial interfaces and DMA; supported through software libraries. (LPC11U37HFBD64/401 only.)
- Clock generation:
 - Crystal Oscillator with an operating range of 1 MHz to 25 MHz (system oscillator).
 - ♦ 12 MHz high-frequency Internal RC oscillator (IRC) that can optionally be used as a system clock.
 - Internal low-power, low-frequency WatchDog Oscillator (WDO) with programmable frequency output.
 - PLL allows CPU operation up to the maximum CPU rate with the system oscillator or the IRC as clock sources.
 - A second, dedicated PLL is provided for USB.

32-bit ARM Cortex-M0 microcontroller

Product data sheet

32-bit ARM Cortex-M0 microcontroller

Table 3.Pin description

Symbol	Pin HVQFN33	Pin TFBGA48	Pin LQFP48	Pin LQFP64		Reset state [1]	Туре	Description
PIO1_28/CT32B0_CAP0/	-	H7	24	31	[3]	I; PU	I/O	PIO1_28 — General purpose digital input/output pin.
SCLK						-	I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
						-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO1_29/SCK0/	-	D7	31	41	[3]	I; PU	I/O	PIO1_29 — General purpose digital input/output pin.
CT32B0_CAP1						-	I/O	SCK0 — Serial clock for SSP0.
						-	I	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
PIO1_31	-	-	25	-	[3]	I; PU	I/O	PIO1_31 — General purpose digital input/output pin.
USB_DM	13	G5	19	25	[7]	F	-	USB_DM — USB bidirectional D– line.
USB_DP	14	H5	20	26	[7]	F	-	USB_DP — USB bidirectional D+ line.
XTALIN	4	D1	6	8	<u>[8]</u>	-	-	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	5	E1	7	9	[8]	-	-	Output from the oscillator amplifier.
V _{DD}	6; 29	B4; E2	8; 44	10; 33; 48; 58		-	-	Supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage.
V _{SS}	33	B5; D2	5; 41	7; 54	_	-	-	Ground.

Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;
 F = floating; If the pins are not used, tie floating pins to ground or power to minimize power consumption.

[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See <u>Figure 32</u> for the reset pad configuration.

[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 31).

[4] I²C-bus pin compliant with the I²C-bus specification for I²C standard mode, I²C Fast-mode, and I²C Fast-mode Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I²C lines. Open-drain configuration applies to all functions on this pin.

[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see <u>Figure 31</u>); includes high-current output driver.

[6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 31</u>); includes digital input glitch filter.

[7] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant.

[8] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). Leave XTALOUT floating.

32-bit ARM Cortex-M0 microcontroller

Fig 6. LPC11U3x memory map

7.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M0. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

7.6.1 Features

- Controls system exceptions and peripheral interrupts.
- In the LPC11U3x, the NVIC supports 24 vectored interrupts.

32-bit ARM Cortex-M0 microcontroller

- 8-frame FIFOs for both transmit and receive
- 4-bit to 16-bit frame

7.13 I²C-bus serial I/O controller

The LPC11U3x contain one I²C-bus controller.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial CLock line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C-bus is a multi-master bus, and more than one bus master connected to the interface can be controlled the bus.

7.13.1 Features

- The I²C-interface is an I²C-bus compliant interface with open-drain pins. The I²C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- The I²C-bus controller supports multiple address recognition and a bus monitor mode.

7.14 10-bit ADC

The LPC11U3x contains one ADC. It is a single 10-bit successive approximation ADC with eight channels.

7.14.1 Features

- 10-bit successive approximation ADC.
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 V to V_{DD}.
- 10-bit conversion time \ge 2.44 μ s (up to 400 kSamples/s).
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition of input pin or timer match signal.
- Individual result registers for each ADC channel to reduce interrupt overhead.

7.15 General purpose external event counter/timers

The LPC11U3x includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

7.15.1 Features

- A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.
- Counter or timer operation.
- Up to two capture channels per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event can also generate an interrupt.
- Four match registers per timer that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Up to four external outputs corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- The timer and prescaler can be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.

7.16 System tick timer

The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).

7.17 Windowed WatchDog Timer (WWDT)

The purpose of the WWDT is to prevent an unresponsive system state. If software fails to update the watchdog within a programmable time window, the watchdog resets the microcontroller

7.17.1 Features

- Internally resets chip if not periodically reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable.
- Optional warning interrupt can be generated at a programmable time before watchdog time-out.

NXP Semiconductors

LPC11U3x

32-bit ARM Cortex-M0 microcontroller

Table 8.	Power consumption for individual analog and digital blocks	

	oonoam	plionio	nannadai					
Peripheral	Typical mA	supply cu	rrent in	Notes				
	n/a	12 MHz	48 MHz	<u> </u>				
IRC	0.27	-	-	System oscillator running; PLL off; independent of main clock frequency.				
System oscillator at 12 MHz	0.22	-	-	IRC running; PLL off; independent of main clock frequency.				
Watchdog oscillator at 500 kHz/2	0.004	-	-	System oscillator running; PLL off; independent of main clock frequency.				
BOD	0.051	-	-	Independent of main clock frequency.				
Main PLL	-	0.21	-	-				
ADC	-	0.08	0.29	-				
CLKOUT	-	0.12	0.47	Main clock divided by 4 in the CLKOUTDIV register.				
CT16B0	-	0.02	0.06	-				
CT16B1	-	0.02	0.06	-				
CT32B0	-	0.02	0.07	-				
CT32B1	-	0.02	0.06	-				
GPIO	-	0.23	0.88	GPIO pins configured as outputs and set to LOW. Direction and pin state are maintained if the GPIO is disabled in the SYSAHBCLKCFG register.				
IOCONFIG	-	0.03	0.10	-				
I ² C	-	0.04	0.13	-				
ROM	-	0.04	0.15	-				
SPI0	-	0.12	0.45	-				
SPI1	-	0.12	0.45	-				
UART	-	0.22	0.82	-				
WWDT	-	0.02	0.06	Main clock selected as clock source for the WDT.				
USB	-	-	1.2	-				

10. Dynamic characteristics

10.1 Flash memory

Table 9. Flash characteristics

 $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{endu}	endurance	[1]	10000	100000	-	cycles
t _{ret}	retention time	powered	10	-	-	years
		unpowered	20	-	-	years
t _{er}	erase time	sector or multiple consecutive sectors	95	100	105	ms
t _{prog}	programming time	[2]	0.95	1	1.05	ms

[1] Number of program/erase cycles.

[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.

Table 10. EEPROM characteristics

 $T_{amb} = -40$ °C to +85 °C; $V_{DD} = 2.7$ V to 3.6 V. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as specified below.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{endu}	endurance		100000	1000000	-	cycles
t _{ret}	retention time	powered	100	200	-	years
		unpowered	150	300	-	years
t _{prog}	programming time	64 bytes	-	2.9	-	ms

10.2 External clock

Table 11. Dynamic characteristic: external clock

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$; V_{DD} over specified ranges.^[1]

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc}	oscillator frequency		1	-	25	MHz
T _{cy(clk)}	clock cycle time		40	-	1000	ns
t _{CHCX}	clock HIGH time		$\rm T_{cy(clk)} \times 0.4$	-	-	ns
t _{CLCX}	clock LOW time		$\rm T_{cy(clk)} \times 0.4$	-	-	ns
t _{CLCH}	clock rise time		-	-	5	ns
t _{CHCL}	clock fall time		-	-	5	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

32-bit ARM Cortex-M0 microcontroller

51 of 77

32-bit ARM Cortex-M0 microcontroller

32-bit ARM Cortex-M0 microcontroller

10.7 USB interface

Table 17. Dynamic characteristics: USB pins (full-speed)

 $C_L = 50 \text{ pF}; R_{pu} = 1.5 \text{ k}\Omega \text{ on } D + \text{ to } V_{DD}; 3.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	10 % to 90 %	8.5	-	13.8	ns
t _f	fall time	10 % to 90 %	7.7	-	13.7	ns
t _{FRFM}	differential rise and fall time matching	t _r / t _f	-	-	109	%
V _{CRS}	output signal crossover voltage		1.3	-	2.0	V
t _{FEOPT}	source SE0 interval of EOP	see <u>Figure 26</u>	160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	see <u>Figure 26</u>	-2	-	+5	ns
t _{JR1}	receiver jitter to next transition		-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %	-9	-	+9	ns
t _{EOPR}	EOP width at receiver	must accept as [1] EOP; see Figure 26	82	-	-	ns

[1] Characterized but not implemented as production test. Guaranteed by design.

11. Application information

11.1 Suggested USB interface solutions

The USB device can be connected to the USB as self-powered device (see <u>Figure 27</u>) or bus-powered device (see <u>Figure 28</u>).

On the LPC11U3x, the PIO0_3/USB_VBUS pin is 5 V tolerant only when V_{DD} is applied and at operating voltage level. Therefore, if the USB_VBUS function is connected to the USB connector and the device is self-powered, the USB_VBUS pin must be protected for situations when $V_{DD} = 0$ V.

If V_{DD} is always at operating level while VBUS = 5 V, the USB_VBUS pin can be connected directly to the VBUS pin on the USB connector.

For systems where V_{DD} can be 0 V and VBUS is directly applied to the VBUS pin, precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum allowable voltage on the USB_VBUS pin in this case.

One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be greater than $0.7V_{DD}$ to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

For the following operating conditions

VBUS_{max} = 5.25 V

 $V_{DD} = 3.6 V,$

the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.

11.2 XTAL input

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with $C_i = 100 \text{ pF}$. To limit the input voltage to the specified range, choose an additional capacitor to ground C_g which attenuates the input voltage by a factor $C_i/(C_i + C_g)$. In slave mode, a minimum of 200 mV (RMS) is needed.

In slave mode, couple the input clock signal with a capacitor of 100 pF (<u>Figure 29</u>), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This signal corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected.

External components and models used in oscillation mode are shown in Figure 30 and in Table 18 and Table 19. Since the feedback resistance is integrated on chip, only a crystal and the capacitances C_{X1} and C_{X2} need to be connected externally in case of fundamental mode oscillation (L, C_L and R_S represent the fundamental frequency). Capacitance C_P in Figure 30 represents the parallel package capacitance and must not be larger than 7 pF. Parameters F_{OSC} , C_L , R_S and C_P are supplied by the crystal manufacturer.

LPC11U3X

56 of 77

11.8.3 I/O Handler I²C

The I/O Handler I²C library allows to have an additional I²C-bus master. I²C read, I²C write and combined I²C read/write are supported. Data is automatically read from and written to user-defined buffers.

The I/O Handler I²C library combined with the on-chip I²C module allows to have two distinct I²C buses, allowing to separate low-speed from high-speed devices or bridging two I²C buses.

11.8.4 I/O Handler DMA

The I/O Handler DMA library offers DMA-like functionality. Four types of transfer are supported: memory to memory, memory to peripheral, peripheral to memory and peripheral to peripheral. Supported peripherals are USART, SSP0/1, ADC and GPIO. DMA transfers can be triggered by the source/target peripheral, software, counter/timer module CT16B1, or I/O Handler pin PIO1_6/IOH_16.

32-bit ARM Cortex-M0 microcontroller

12. Package outline

HVQFN33: plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 x 5 x 0.85 mm

Fig 34. Package outline HVQFN33 (5 x 5 x 0.85 mm)

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors

LPC11U3x

32-bit ARM Cortex-M0 microcontroller

16. Revision history

	Release date	Data shoot status	Change notice	Supersedes
	20170209	Draduot data abaat	onange notice	
LPC1103X V.2.3	20170206	Product data sheet	-	
Modifications:	applications	are available on <u>nxp.com</u> .		multiple I/O Handler
LPC11U3X v.2.2	20140311	Product data sheet	-	LPC11U3X v.2.1
Modifications:	Use of USB_ solutions".Open-drain I	_CONNECT signal explained ir ² C-bus and RESET pin descrij	n Section 11.1 "Sugg ptions clarified. See	ested USB interface Table 3.
LPC11U3X v.2.1	20131230	Product data sheet	-	LPC11U3X v.2
Modifications:		Add reserved function to pins PIO0_9/MOSI0/CT16B0_MA	s PIO0_8/MISO0/CT T1/R/IOH_7.	16B0_MAT0/R/IOH_6 and
LPC11U3X v.2	20131125	Product data sheet	-	LPC11U3X v.1.1
Modifications:		Part LPC11U37HFBD64	1/401 with I/O handle	er added.
		Additional I/O Handler p	in functions added ir	n Table 3.
		• Typical range of watchd 2.3 MHz.See Table 13.	og oscillator frequen	cy changed to 9.4 kHz to
		Section 11.8 "I/O Handle	er software library ap	plications" added.
		Updated Section 11.1 "S	Suggested USB inter	face solutions" for clarity.
		 Condition V_{DD} = 0 V add 	ded to Parameter V _I	in Table 5 for clarity.
LPC11U3X v.1.1	20130924	Product data sheet	-	LPC11U3X v.1
Modifications:		Removed the footnote " corresponding maximum	The peak current is I n current." in Table 4	imited to 25 times the
		Table 3: Added "5 V tole	erant pad" to RESET	/PIO0_0 table note.
		Table 7: Removed BOD	interrupt level 0.	
		 Programmable glitch filte 	er is enabled by defa	ault. See Section 7.7.1.
		 Added Section 11.6 "AD 	C effective input imp	bedance".
		 Table 5 "Static character 	ristics" added Pin ca	pacitance section.
		 Updated Section 11.1 "S 	Suggested USB inter	face solutions".
		 Table 4 "Limiting values" 		
		 Updated V_{DD} min an 	d max.	
		 Updated V_I condition 	IS.	
		 Table 10 "EEPROM cha 	racteristics":	
		 Removed f_{clk} and t_{er}; parameters. 	the user does not h	ave control over these
		 Changed the t_{prog} fro does an erase and p 	om 1.1 ms to 2.9 ms; rogram, thus the tota	the EEPROM IAP always al program time is $t_{er} + t_{prog}$.
		 Changed title of Figure 2 device" to "USB interfac 	29 from "USB interfa e with soft-connect".	ce on a self-powered
		 Section 10.7 "USB interformed to t_{EOPR}. 	face" added. Parame	eter t_{EOPR1} and t_{EOPR2}
LPC11U3X v.1	20120420	Product data sheet	-	-

Table 21. Revision history

32-bit ARM Cortex-M0 microcontroller

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

18. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

32-bit ARM Cortex-M0 microcontroller

19. Contents

1	General description 1
2	Features and benefits 1
3	Applications 3
4	Ordering information 3
4.1	Ordering options 4
5	Block diagram
6	Pinning information
6.1	Pinning
6.2	Pin description 10
7	Functional description 17
7.1	On-chip flash programming memory 17
7.2	EEPROM
7.3	SRAM 17
7.4	On-chip ROM
7.5	Memory map 17
7.6	Nested Vectored Interrupt Controller (NVIC) . 18
7.6.1	Features
7.6.2	Interrupt sources
7.7	IOCON block 19
7.7.1	Features
7.8	General-Purpose Input/Output GPIO 19
7.8.1	LISP interface 20
7.9	USD Intendee 20 Full-speed USB device controller 20
7.9.1	Features 20
7.10	I/O Handler (I PC11U37HFBD64/401 only) 20
7.11	USART
7.11.1	Features
7.12	SSP serial I/O controller
7.12.1	Features
7.13	I ² C-bus serial I/O controller
7.13.1	Features
7.14	10-bit ADC 22
7.14.1	Features
7.15	General purpose external event
7 4 5 4	counter/timers
7.15.1	Features
7.16	System tick timer
7.17	
7 1 2	Clocking and power control 24
7 18 1	Integrated oscillators 24
7 18 1 1	Internal RC oscillator 25
7.18 1 2	System oscillator
7.18.1.3	Watchdog oscillator
7.18.2	System PLL and USB PLL
7.18.3	Clock output
	-

7.18.4	Wake-up process	26
7.18.5	Power control	26
7.18.5.1	Power profiles	27
7.18.5.2	Sleep mode	27
7.18.5.3	Deep-sleep mode	27
7.18.5.4	Power-down mode	27
7.18.5.5	Deep power-down mode	28
7.18.6	System control	28
7.18.6.1	Reset	28
7.18.6.2	Brownout detection	28
7.18.6.3	Code security (Code Read Protection - CRP)	28
7.18.6.4	APB interface	29
7.18.6.5	AHBLite	29
7.18.6.6	External interrupt inputs	29
7.19	Emulation and debugging	30
8	Limiting values	31
9	Static characteristics	32
9.1	BOD static characteristics	38
92	Power consumption	38
9.3	Peripheral power consumption	41
9.4	Electrical pin characteristics.	43
10	Dynamic characteristics	46
10 1	Flash memory	46
10.1	External clock	46
10.2		/7
10.0		18
10.4	l ² C-bus	48
10.6	SSP interface	50
10.0	USB interface	53
11	Application information	5/
11 1	Suggested USB interface solutions	5/
11.1		56
11.2	XTAL Printed-Circuit Board (PCB) lavout	50
11.5	quidelines	57
11 /	Standard I/O pad configuration	58
11.4	Reset pad configuration	50
11.5		50
11.0		60
11.7	I/O Handler software library applications	60
11.0	I/O Handler I/O	60
11.0.1		60
11.0.2		61
11.0.3		61
11.0.4		01
12		62
13	Soldering	67
14	Abbreviations	72

continued >>