

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s6avm08abr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Subsystem	Brief Description
ENET	Ethernet Controller	Connectivity Peripherals	The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. Note: The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE).
EPIT-1 EPIT-2	Enhanced Periodic Interrupt Timer	Timer Peripherals	Each EPIT is a 32-bit "set and forget" timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.
ESAI	Enhanced Serial Audio Interface	Connectivity Peripherals	The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.

Table 2. i.MX 6Solo/6DualLite	Modules Li	ist (continued)
-------------------------------	------------	-----------------

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
VPU	Video Processing Unit	Multimedia Peripherals	A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i. <i>MX 6Solo/6DualLite Reference Manual</i> (<i>IMX6SDLRM</i>) for complete list of VPU's decoding/encoding capabilities.
WDOG-1	Watch Dog	Timer Peripherals	The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG-2 (TZ)	Watch Dog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.
WEIM	NOR-Flash /PSRAM interface	Connectivity Peripherals	 The WEIM NOR-FLASH / PSRAM provides: Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency Multiple chip selects
XTALOSC	Crystal Oscillator I/F	Clocks, Resets, and Power Control	The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator to provide USB required frequency.

Electrical Characteristics

4 Electrical Characteristics

This section provides the device and module-level electrical characteristics for the i.MX 6Solo/6DualLite processors.

4.1 Chip-Level Conditions

This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.

For these characteristics,	Topic appears
Absolute Maximum Ratings	on page 22
BGA Case 2240 Package Thermal Resistance	on page 23
Operating Ranges	on page 24
External Clock Sources	on page 26
Maximal Supply Currents	on page 27
Low Power Mode Supply Currents	on page 29
USB PHY Current Consumption	on page 30
PCIe 2.0 Power Consumption	on page 30

4.1.1 Absolute Maximum Ratings

Table 7. Absolute Maximum Ratings

Parameter Description	Symbol	Min	Мах	Unit
Core supply voltages	VDDARM_IN VDDSOC_IN	-0.3	1.5	V
Internal supply voltages	VDDARM_CAP VDDSOC_CAP VDDPU_CAP	-0.3	1.3	V
GPIO supply voltage	Supplies denoted as I/O supply	-0.5	3.6	V
DDR I/O supply voltage	Supplies denoted as I/O supply	-0.4	1.975	V
MLB I/O supply voltage	Supplies denoted as I/O supply	-0.3	2.8	V
LVDS I/O supply voltage	Supplies denoted as I/O supply	-0.3	2.8	V
VDD_SNVS_IN supply voltage	VDD_SNVS_IN	-0.3	3.3	V
VDDHIGH_IN supply voltage	VDDHIGH_IN	-0.3	3.6	V
USB VBUS	VBUS		5.25	V
Input voltage on USB_OTG_DP, USB_OTG_DN, USB_H1_DP, USB_H1_DN pins	USB_DP/USB_DN	-0.3	3.63	V
Input/output voltage range	V _{in} /V _{out}	-0.5	OVDD ¹ +0.3	V

4.1.6 Low Power Mode Supply Currents

Table 13 shows the current core consumption (not including I/O) of i.MX 6Solo/6DualLite processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Units
WAIT	• ARM, SoC, and PU LDOs are set to 1.225	VDDARM_IN (1.4V)	4.5	mA
	 HIGH LDO set to 2.5 V Clocks are gated. 	VDDSOC_IN (1.4V)	23	
	 DDR is in self refresh. PLLs are active in bypass (24MHz) 	VDDHIGH_IN (3.0V)	13.5	
	Supply Voltages remain ON	Total	79	mW
STOP_ON	ARM LDO set to 0.9V	VDDARM_IN (1.4V)	4	mA
	 SoC and PU LDOs set to 1.225 V HIGH LDO set to 2.5 V 	VDDSOC_IN (1.4V)	22	
	 PLLs disabled DDR is in self refresh. 	VDDHIGH_IN (3.0V)	8.5	
		Total	61.9	mW
STOP_OFF	 ARM LDO set to 0.9V SoC LDO set to: 1.225 V PU LDO is power gated HIGH LDO set to 2.5 V PLLs disabled DDR is in self refresh 	VDDARM_IN (1.4V)	4	mA
		VDDSOC_IN (1.4V)	13.5	
		VDDHIGH_IN (3.0V)	7.5	
		Total	47	mW
STANDBY	ARM and PU LDOs are power gated	VDDARM_IN (0.9V)	0.1	mA
	 SoC LDO is in bypass HIGH LDO is set to 2.5V 	VDDSOC_IN (0.9V)	5	
	PLLs are disabledLow Voltage	VDDHIGH_IN (3.0V)	5	
	Well Bias ON XTAL is enabled	Total	19.6	mW
Deep Sleep Mode (DSM)	ARM and PU LDOs are power gated	VDDARM_IN (0.9V)	0.1	mA
	 SoC LDO is in bypass HIGH LDO is set to 2.5V 	VDDSoC_IN (0.9V)	2	1
	PLLs are disabledLow Voltage	VDDHIGH_IN (3.0V)	0.5]
	Well Bias ONXTAL and bandgap are disabled	Total	3.4	mW

Table 13. Stop Mode Current and Power Consumption

The typical values shown here are for information only and are not guaranteed. These values are average values measured on a typical wafer at 25°C.

1

4.1.9 HDMI Power Consumption

Table 16 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data and power-down modes.

Mode	Test Conditions	Supply	Max Current	Unit
Active	Bit rate 251.75 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.1	mA
	Bit rate 279.27 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.2	mA
	Bit rate 742.5 Mbps	HDMI_VPH	17	mA
		HDMI_VP	7.5	mA
	Bit rate 1.485 Gbps	HDMI_VPH	17	mA
		HDMI_VP	12	mA
	Bit rate 2.275 Gbps	HDMI_VPH	16	mA
		HDMI_VP	17	mA
	Bit rate 2.97 Gbps	HDMI_VPH	19	mA
		HDMI_VP	22	mA
Power-down		HDMI_VPH	49	μΑ
		HDMI_VP	1100	μΑ

Table 16. HDMI PHY Current Drain

4.2 **Power Supplies Requirements and Restrictions**

The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations:

- Excessive current during power-up phase
- Prevention of the device from booting
- Irreversible damage to the processor (worst-case scenario)

4.2.1 Power-Up Sequence

The below restrictions must be followed:

- VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDDHIGH_IN supply.
- If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on.
- If VDDARM_IN and VDDSOC_IN are connected to different external supply sources, then the following restrictions apply:

- 2. Calibration is done against 240 Ω external reference resistor.
- 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.8.4 MLB I/O Differential Output Impedance

Table 38 shows MLB I/O differential output impedance of the i.MX 6Solo/6DualLite processors.

Table 38. MLB I/O Differential Output Impedance

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Differential Output Impedance	Zo		1.6 K		_	Ω

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6Solo/6DualLite processor.

4.9.1 Reset Timings Parameters

Figure 10 shows the reset timing and Table 39 lists the timing parameters.

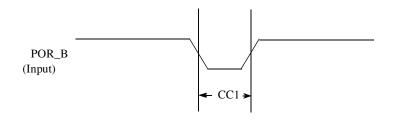


Figure 10. Reset Timing Diagram

Table 39. Reset	Timing	Parameters
-----------------	--------	------------

ID	Parameter	Min	Max	Unit
CC1	Duration of POR_B to be qualified as valid (input slope = 5 ns)	1		RTC_XTALI cycle

4.9.2 WDOG Reset Timing Parameters

Figure 11 shows the WDOG reset timing and Table 40 lists the timing parameters.

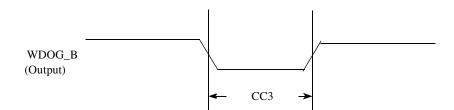


Figure 11. WDOG_B Timing Diagram

Table 40. WDOG_B Timing Parameters

ID	Parameter	Min	Мах	Unit
CC3	Duration of WDOG_B Assertion	1	_	RTC_XTALI cycle

NOTE

RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 μ s.

NOTE

WDOG_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information.

4.9.3 External Interface Module (EIM)

The following subsections provide information on the EIM.

4.9.3.1 EIM Signal Cross Reference

Table 41 is a guide intended to help the user identify signals in the External Interface Module chapter of the reference manual that are identical to those mentioned in this data sheet.

Reference Manual EIM Chapter Nomenclature	Data Sheet Nomenclature, Reference Manual External Signals and Pin Multiplexing Chapter, and IOMUXC Controller Chapter Nomenclature
BCLK	EIM_BCLK
CSx_B	EIM_CSx
WE_B	EIM_RW
OE_B	EIM_OE
BEy_B	EIM_EBx

Table 41. EIM Signal Cross Reference

Electrical Characteristics

Ref No.	Parameter	Determination by Synchronous measured parameters ¹	Min	Max (If 132 MHz is supported by SoC)	Unit
WE31	CSx_B valid to Address Valid	WE4 - WE6 - CSA ²	_	3 - CSA	ns
WE32	Address Invalid to CSx_B invalid	WE7 - WE5 - CSN ³	_	3 - CSN	ns
WE32A(muxed A/D	CSx_B valid to Address Invalid	t ⁴ + WE4 - WE7 + (ADVN ⁵ + ADVA ⁶ + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	_	ns
WE33	CSx_B Valid to WE_B Valid	WE8 - WE6 + (WEA - WCSA)	_	3 + (WEA - WCSA)	ns
WE34	WE_B Invalid to CSx_B Invalid	WE7 - WE9 + (WEN - WCSN)	_	3 - (WEN_WCSN)	ns
WE35	CSx_B Valid to OE_B Valid	WE10 - WE6 + (OEA - RCSA)		3 + (OEA - RCSA)	ns
WE35A (muxed A/D)	CSx_B Valid to OE_B Valid	WE10 - WE6 + (OEA + RADVN + RADVA + ADH + 1 - RCSA)	-3 + (OEA + RADVN+RADVA+ ADH+1-RCSA)	3 + (OEA + RADVN+RADVA+AD H+1-RCSA)	ns
WE36	OE_B Invalid to CSx_B Invalid	WE7 - WE11 + (OEN - RCSN)		3 - (OEN - RCSN)	ns
WE37	CSx_B Valid to BEy_B Valid (Read access)	WE12 - WE6 + (RBEA - RCSA)	—	3 + (RBEA - RCSA)	ns
WE38	BEy_B Invalid to CSx_B Invalid (Read access)	WE7 - WE13 + (RBEN - RCSN)	—	3 - (RBEN- RCSN)	ns
WE39	CSx_B Valid to ADV_B Valid	WE14 - WE6 + (ADVA - CSA)		3 + (ADVA - CSA)	ns
WE40	ADV_B Invalid to CSx_B Invalid (ADVL is asserted)	WE7 - WE15 - CSN	_	3 - CSN	ns
WE40A (muxed A/D)	CSx_B Valid to ADV_B Invalid	WE14 - WE6 + (ADVN + ADVA + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	3 + (ADVN + ADVA + 1 - CSA)	ns
WE41	CSx_B Valid to Output Data Valid	WE16 - WE6 - WCSA	_	3 - WCSA	ns
WE41A (muxed A/D)	CSx_B Valid to Output Data Valid	WE16 - WE6 + (WADVN + WADVA + ADH + 1 - WCSA)	_	3 + (WADVN + WADVA + ADH + 1 - WCSA)	ns
WE42	Output Data Invalid to CSx_B Invalid	WE17 - WE7 - CSN	—	3 - CSN	ns
MAXCO	Output max. delay from internal driving ADDR/control FFs to chip outputs.	10		-	ns
MAXCS O	Output max. delay from CSx internal driving FFs to CSx out.	10	_	_	
MAXDI	DATA MAXIMUM delay from chip input data to its internal FF	5	_	—	

Table 44. EIM Asynchronous Timing Parameters Table Relative Chip Select

4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)

4.9.4.1 DDR3/DDR3L Parameters

Figure 24 shows the basic timing parameters. The timing parameters for this diagram appear in Table 45.

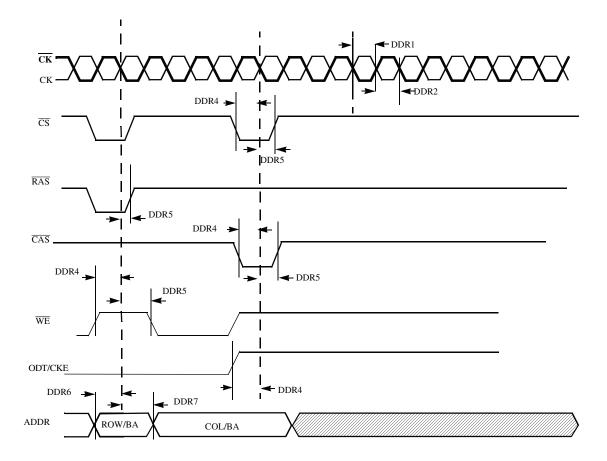
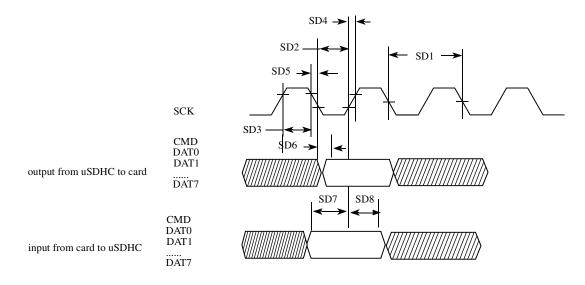


Figure 24. DDR3 Command and Address Timing Parameters

ID	Parameter	Symbol	CK = 40	00 MHz	Unit
U	Parameter	Symbol -	Min	Мах	Unit
DDR1	CK clock high-level width	tсн	0.47	0.53	tск
DDR2	CK clock low-level width	tCL	0.47	0.53	tск
DDR4	CS, RAS, CAS, CKE, WE, ODT setup time	tis	800	—	ps
DDR5	CS, RAS, CAS, CKE, WE, ODT hold time	tıн	580	—	ps
DDR6	Address output setup time	tis	800	_	ps
DDR7	Address output hold time	tін	580	_	ps


Table 45. DDR3/DDR3L Timi	ing Parameter Table
---------------------------	---------------------

4.11.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.

4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing

Figure 44 depicts the timing of SD/eMMC4.3, and Table 57 lists the SD/eMMC4.3 timing characteristics.

Figure 44. SD/eMMC4.3 Timing

ID	Parameter	ameter Symbols Min		Мах	Unit
	Card Input Clock	(
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz
SD2	Clock Low Time	t _{WL}	7	—	ns
SD3	Clock High Time	t _{WH}	7	—	ns
SD4	Clock Rise Time	t _{TLH}	_	3	ns
SD5	Clock Fall Time	t _{THL}	_	3	ns
	uSDHC Output/Card Inputs CMD, DA	T (Reference to	CLK)		
SD6	uSDHC Output Delay	t _{OD}	-6.6	3.6	ns

Table 57. SD/eMMC4.3 Interface Timing Specification

Electrical Characteristics

Figure 47 shows MII receive signal timings. Table 60 describes the timing parameters (M1–M4) shown in the figure.

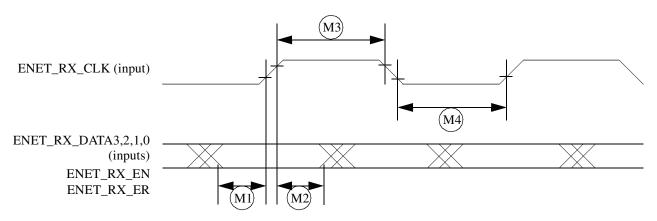


Figure 47. MII Receive Signal Timing Diagram

Table 60. MII Receive Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
M1	ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup	5	_	ns
M2	ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold	5	_	ns
М3	ENET_RX_CLK pulse width high	35%	65%	ENET_RX_CLK period
M4	ENET_RX_CLK pulse width low	35%	65%	ENET_RX_CLK period

¹ ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)

The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency.

NOTE

Table 71 provides information for both the Disp0 and Disp1 ports. However, Disp1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all the above configurations. See the IOMUXC table for details.

4.11.10.5 IPU Display Interface Timing

The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls accordantly.

4.11.10.5.1 Synchronous Controls

The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent wave form.

There are special physical outputs to provide synchronous controls:

- The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display.
- The ipp_pin_1- ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display.

The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYCN) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control's changing points with half DI_CLK resolution. A full description of the counters system can be found in the IPU chapter of the *i.MX* 6Solo/6DualLite Reference Manual (IMX6SDLRM).

4.11.10.5.2 Asynchronous Controls

The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data.

There are special physical outputs to provide asynchronous controls, as follows:

- The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
- The ipp_pin_11- ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data oriented signal to display.

NOTE

The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data in the bus, a new internal start (local start point) is generated. The signals generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution.

4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams

Figure 68 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All the parameters shown in the figure are programmable. All controls are started by corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.

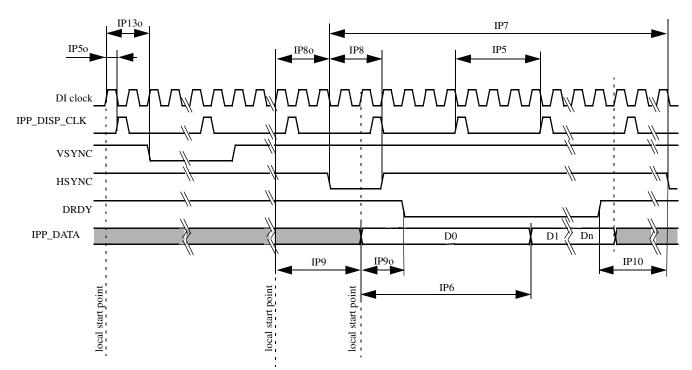
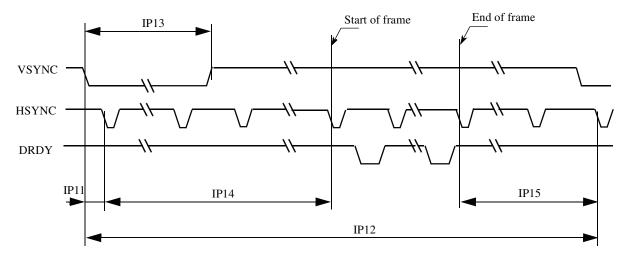
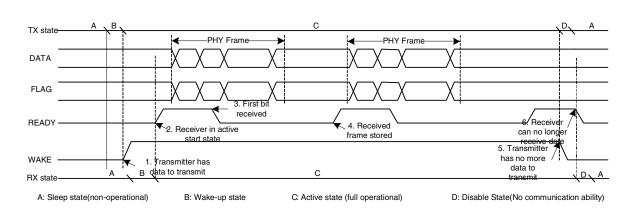




Figure 68. TFT Panels Timing Diagram—Horizontal Sync Pulse

Figure 69 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable.

4.11.13.4 Synchronized Data Flow Transmission with Wake

Figure 81. Synchronized Data Flow Transmission with WAKE

4.11.13.5 Stream Transmission Mode Frame Transfer

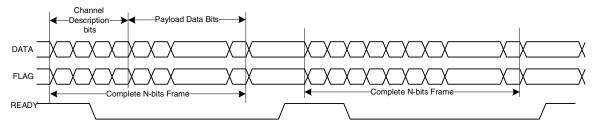


Figure 82. Stream Transmission Mode Frame Transfer (Synchronized Data Flow)

4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)

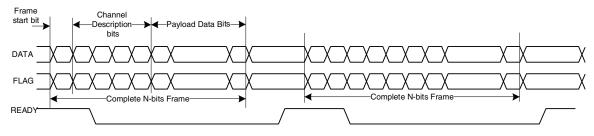


Figure 83. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)

4.11.14 MediaLB (MLB) Characteristics

4.11.14.1 MediaLB (MLB) DC Characteristics

Table 78 lists the MediaLB 3-pin interface electrical characteristics.

Table 78. MediaLB 3-Pin Interface Electrical DC Specifications

Parameter	Symbol	Test Conditions	Min	Max	Unit
Maximum input voltage	—	—	_	3.6	V
Low level input threshold	V _{IL}	_	_	0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8	_	V
Low level output threshold	V _{OL}	I _{OL} = 6 mA	_	0.4	V
High level output threshold	V _{OH}	I _{OH} = -6 mA	2.0	—	V
Input leakage current	١L	0 < V _{in} < VDD	_	±10	μA

¹ Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

Table 79 lists the MediaLB 6-pin interface electrical characteristics.

Table 79. MediaLB 6-Pin Interface Electrical DC Specifications

Symbol	Test Conditions	Min	Max	Unit
I	Driver Characteristics			
V _{OD}	See Note ¹	300	500	mV
ΔV _{OD}	_	-50	50	mV
V _{OCM}	_	1.0	1.5	V
ΔV _{OCM}	_	-50	50	mV
V _{CMV}	See Note ²	_	150	mVpp
ll _{OS} l	See Note ³		43	mA
ZO	_	1.6	_	kΩ
	V _{OD} ΔV _{OD} V _{OCM} ΔV _{OCM}	Driver Characteristics V _{OD} See Note ¹ ΔV _{OD} — ΔV _{OD} — V _{OCM} — ΔV _{OCM} — ΔV _{OCM} — V _{CMV} See Note ² II _{OS} I See Note ³	Driver Characteristics V_{OD} See Note1300 ΔV_{OD} —-50 V_{OCM} —1.0 ΔV_{OCM} —-50 ΔV_{OCM} —-50 V_{CMV} See Note2— $II_{OS}I$ See Note3—	Driver Characteristics 300 500 ΔV_{OD} See Note ¹ 300 500 ΔV_{OD} - -50 50 ∇_{OCM} - 1.0 1.5 ΔV_{OCM} - -50 50 ∇_{OCM} - - 50 ∇_{VOCM} - - 50 ∇_{VOCM} - - 50 ∇_{VOCM} See Note ² - 150 $II_{OS}I$ See Note ³ - 43

Characteristics	Symbol	Timing Para	meter Range	Unit
Characteristics	Symbol	Min	Max	Onn
SPDIFIN Skew: asynchronous inputs, no specs apply	_	_	0.7	ns
SPDIFOUT output (Load = 50pf) • Skew • Transition rising • Transition falling			1.5 24.2 31.3	ns
SPDIFOUT1 output (Load = 30pf) • Skew • Transition rising • Transition falling		 	1.5 13.6 18.0	ns
Modulating Rx clock (SRCK) period	srckp	40.0	_	ns
SRCK high period	srckph	16.0	_	ns
SRCK low period	srckpl	16.0		ns
Modulating Tx clock (STCLK) period	stclkp	40.0	—	ns
STCLK high period	stclkph	16.0	_	ns
STCLK low period	stclkpl	16.0	—	ns

Table 85. SPDIF Timing Parameters

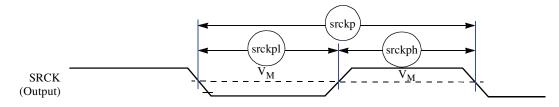


Figure 93. SRCK Timing Diagram

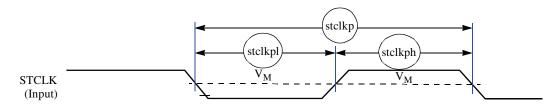


Figure 94. STCLK Timing Diagram

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

 $\$ MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PROF	FILE,	DOCUMEI	NT NO: 98ASA00404D	REV: O
FINE PITCH, 624	, .	CASE NU	JMBER: 2240-01	27 SEP 2011
21 X 21 PKG, 0.8 MM F	ИТСН (МАР)	STANDAF	RD: NON-JEDEC	

Figure 105. 21 x 21 mm BGA, Case 2240 Package Top, Bottom, and Side Views

Package Information and Contact Assignments

				Out of Reset Condition ²									
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value						
RTC_XTALI	D9	VDD_SNVS_CAP											
RTC_XTALO	C9	VDD_SNVS_CAP											
SD1_CLK	D20	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[20]	Input	100 k Ω pull-up						
SD1_CMD	B21	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[18]	Input	100 k Ω pull-up						
SD1_DAT0	A21	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[16]	Input	100 k Ω pull-up						
SD1_DAT1	C20	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[17]	Input	100 k Ω pull-up						
SD1_DAT2	E19	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[19]	Input	100 k Ω pull-up						
SD1_DAT3	F18	NVCC_SD1	GPIO	ALT5	gpio1.GPIO[21]	Input	100 k Ω pull-up						
SD2_CLK	C21	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[10]	Input	100 k Ω pull-up						
SD2_CMD	F19	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[11]	Input	100 kΩ pull-up						
SD2_DAT0	A22	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[15]	Input	100 kΩ pull-up						
SD2_DAT1	E20	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[14]	Input	100 kΩ pull-up						
SD2_DAT2	A23	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[13]	Input	100 kΩ pull-up						
SD2_DAT3	B22	NVCC_SD2	GPIO	ALT5	gpio1.GPIO[12]	Input	100 kΩ pull-up						
SD3_CLK	D14	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[3]	Input	100 k Ω pull-up						
SD3_CMD	B13	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[2]	Input	100 kΩ pull-up						
SD3_DAT0	E14	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[4]	Input	100 k Ω pull-up						
SD3_DAT1	F14	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[5]	Input	100 k Ω pull-up						
SD3_DAT2	A15	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[6]	Input	100 k Ω pull-up						
SD3_DAT3	B15	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[7]	Input	100 k Ω pull-up						
SD3_DAT4	D13	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[1]	Input	100 k Ω pull-up						
SD3_DAT5	C13	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[0]	Input	100 k Ω pull-up						
SD3_DAT6	E13	NVCC_SD3	GPIO	ALT5	gpio6.GPIO[18]	Input	100 kΩ pull-up						
SD3_DAT7	F13	NVCC_SD3	GPIO	ALT5	gpio6.GPIO[17]	Input	100 kΩ pull-up						
SD3_RST	D15	NVCC_SD3	GPIO	ALT5	gpio7.GPIO[8]	Input	100 kΩ pull-up						
SD4_CLK	E16	NVCC_NANDF	GPIO	ALT5	gpio7.GPIO[10]	Input	100 kΩ pull-up						
SD4_CMD	B17	NVCC_NANDF	GPIO	ALT5	gpio7.GPIO[9]	Input	100 kΩ pull-up						
SD4_DAT0	D18	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[8]	Input	100 kΩ pull-up						
SD4_DAT1	B19	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[9]	Input	100 k Ω pull-up						
SD4_DAT2	F17	NVCC_NANDF	GPIO	ALT5	gpio2.GPIO[10]	Input	100 k Ω pull-up						
	_			1	L	-							

Table 101. 21 x 21 mm Functional Contact Assignments¹ (continued)

Package Information and Contact Assignments

	AE	AD
-	GND	DRAM_D5
2	DRAM_D1	DRAM_D0
e	DRAM_SDQS0	DRAM_SDQS0_B
4	DRAM_D7	GND
5	DRAM_D9	DRAM_D8
9	DRAM_SDQS1_B	DRAM_SDQS1
7	DRAM_D11	GND
8	DRAM_SDQS2_B	DRAM_SDQS2
6	DRAM_D24	DRAM_D29
10	DRAM_DQM3	GND
11	DRAM_D26	DRAM_D30
12	DRAM_A9	DRAM_A12
13	DRAM_A5	GND
14	DRAM_SDCLK_1_B	DRAM_SDCLK_1
15	DRAM_SDCLK_0_B	DRAM_SDCLK_0
16	DRAM_CAS	GND
17	ZQPAD	DRAM_CS1
18	NC	NC
19	NC	GND
20	NC	NC
21	NC	NC
22	NC	GND
23	NC	NC
24	NC	NC
25	GND	NC
	AE	AD

Table 102. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

Table 103 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6DualLite.

Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map

	-	2	e	4	ß	9	~	8	6	10	÷	12	13	4	15	16	17	18	19	20	21	52	23	24	25	
	-			~	47	.		~	0,	-	-	-	-	-	-	-	-	-	-	2	2	2	3	Ñ	3	<u> </u>
٩	NC	PCIE_REXT	PCIE_TXM	GND	FA_ANA	USB_OTG_DP	XTALI	GND	MLB_SN	MLB_DP	MLB_CN	NC	GND	NC	SD3_DAT2	NANDF_ALE	NANDF_CS2	NANDF_D0	NANDF_D4	SD4_DAT3	SD1_DAT0	SD2_DAT0	SD2_DAT2	RGMII_TD3	GND	A
ß	PCIE_RXM	PCIE_RXP	PCIE_TXP	GND	VDD_FA	USB_OTG_DN	XTALO	USB_OTG_CHD_B	MLB_SP	MLB_DN	MLB_CP	NC	SD3_CMD	NC	SD3_DAT3	NANDF_RB0	SD4_CMD	NANDF_D5	SD4_DAT1	SD4_DAT6	SD1_CMD	SD2_DAT3	RGMII_RD1	RGMII_RD2	RGMII_RXC	B
U	GND	JTAG_TRSTB	JTAG_TMS	GND	CLK2_N	GND	CLK1_N	GPANAIO	RTC_XTALO	GND	POR_B	BOOT_MODE0	SD3_DAT5	NC	NANDF_CLE	NANDF_CS1	NANDF_D1	NANDF_D7	SD4_DAT5	SD1_DAT1	SD2_CLK	RGMII_TD0	RGMII_TX_CTL	RGMII_RD0	EIM_D16	U
٥	CSI_D1M	CSI_D1P	GND	CSI_REXT	CLK2_P	GND	CLK1_P	GND	RTC_XTALI	USB_H1_VBUS	PMIC_ON_REQ	ONOFF	SD3_DAT4	SD3_CLK	SD3_RST	NANDF_CS3	NANDF_D3	SD4_DAT0	SD4_DAT7	SD1_CLK	RGMII_TXC	RGMII_RX_CTL	RGMII_RD3	EIM_D18	EIM_D23	D

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM Cortex[™]-A9 is a trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

Document Number: IMX6SDLAEC Rev. 1 11/2012

