

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Betuns	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s6avm08acr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Subsystem	Brief Description
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Solo/6DualLite processors, the OCRAM is used for controlling the 128 KB multimedia RAM through a 64-bit AXI bus.
OSC32KHz	OSC32KHz	Clocking	Generates 32.768 KHz clock from external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU	Power-Management functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.
RAM 128 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controller.
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.
ROM 96KB	Boot ROM	Internal Memory	Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection.
ROMCP	ROM Controller with Patch	Data Path	ROM Controller with ROM Patch support

Table 2. i.MX 6Solo/6DualLite M	Modules List (continued)
---------------------------------	--------------------------

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
SDMA	Smart Direct Memory Access	System Control Peripherals	 The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: Powered by a 16-bit Instruction-Set micro-RISC engine Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels 48 events with total flexibility to trigger any combination of channels Memory accesses including linear, FIFO, and 2D addressing Shared peripherals between ARM and SDMA Very fast Context-Switching with 2-level priority based preemptive multi-tasking DMA units with auto-flush and prefetch capability Flexible address management for DMA transfers (increment, decrement, and no address) DMA ports can handle unit-directional and bi-directional flows (copy mode) Up to 8-word buffer for configurable burst transfers Support of byte-swapping and CRC calculations Library of Scripts and API is available
SJC	System JTAG Controller	System Control Peripherals	The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Solo/6DualLite processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Solo/6DualLite SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.
SPDIF	Sony Philips Digital Interconnect Format	Multimedia Peripherals	A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality.
SNVS	Secure Non-Volatile Storage	Security	Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Modules List

Signal Name	Remarks
DRAM_VREF	When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k Ω 0.5% resistor to GND and a 1 k Ω 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 µF capacitor.
	To reduce supply current, a pair of 1.5 k Ω 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 6Solo/6DualLite are drawing current on the resistor divider.
	It is recommended to use regulated power supply for "big" memory configurations (more that eight devices)
ZQPAD	DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND.
NVCC_LVDS2P5	The DDR pre-drivers share the NVCC_LVDS2P5 ball with the LVDS interface. This ball can be shorted to VDDHIGH_CAP on the circuit board.
VDD_FA FA_ANA	These signals are reserved for Freescale manufacturing use only. User must tie both connections to GND.
GPANAIO	This signal is reserved for Freescale manufacturing use only. User must leave this connection floating.
JTAG_nnnn	The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up.
	JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided.
	JTAG_MOD is referenced as SJC_MOD in the i.MX 6Solo/6DualLite reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k Ω) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain.
NC	These signals are No Connect (NC) and should be floated by the user.
POR_B	This cold reset negative logic input resets all modules and logic in the IC. May be used in addition to internally generated power on reset signal (logical AND, both internal and external signals are considered active low).
ONOFF	In normal mode may be connected to ON/OFF button (De-bouncing provided at this input). Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF.
TEST_MODE	TEST_MODE is for Freescale factory use. This signal is internally connected to an on-chip pull-down device. The user must either float this signal or tie it to GND.
PCIE_REXT	The impedance calibration process requires connection of reference resistor 200 Ω 1% precision resistor on PCIE_REXT pad to ground.

⁴ External oscillator or a fundamental frequency crystal with internal oscillator amplifier.

The typical values shown in Table 11 are required for use with Freescale BSPs to ensure precise time

keeping and USB operation. For RTC_XTAL operation, two clock sources are available.

On-chip 40 kHz ring oscillator-this clock source has the following characteristics:

Approximately 25 µA more Idd than crystal oscillator

Approximately ±50% tolerance

No external component required

Starts up quicker than 32 kHz crystal oscillator

External crystal oscillator with on-chip support circuit:

At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.

Higher accuracy than ring oscillator

If no external crystal is present, then the ring oscillator is utilized

The decision of choosing a clock source should be taken based on real-time clock use and precision timeout.

4.1.5 Maximal Supply Currents

The Power Virus numbers shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption.

The MMPF0100xxxx, Freescale's power management IC targeted for the i.MX 6x family, supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design is required for the increased system power dissipation.

See the i.MX 6Solo/6DualLite Power Consumption Measurement Application Note (AN4576) for more details on typical power consumption under various use case definitions.

Power Line	Conditions	Max Current	Unit
VDDARM_IN	996 MHz ARM clock based on Power Virus operation	2200	mA
VDDSOC_IN	996 MHz ARM clock	1260	mA
VDDHIGH_IN		125 ¹	mA
VDD_SNVS_IN		275 ²	μA
USB_OTG_VBUS/USB_H1_VBUS (LDO 3P0)		25 ³	mA
Prima	ary Interface (IO) Supplies		

 Table 12. Maximal Supply Currents

- VDDARM_IN supply must be turned ON together with VDDSOC_IN supply or not delayed more than 1 ms
- VDDARM_CAP must not exceed VDDSOC_CAP by more than 50 mV.

NOTE

The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the *i.MX 6Solo/6DualLite Reference Manual* for further details and to ensure that all necessary requirements are being met.

NOTE

Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies).

NOTE

USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and may be powered at any time.

4.2.2 Power-Down Sequence

No special restrictions for i.MX 6Solo/6DualLite IC.

4.2.3 **Power Supplies Usage**

All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, "Package Information and Contact Assignments."

4.3 Integrated LDO Voltage Regulator Parameters

Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* for details on the power tree scheme.

NOTE

The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only.

4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)

There are three digital LDO regulators ("Digital", because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of

Table 27 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Output Differential Voltage	VOD	Rload-100 Ω Diff	250	350	450	mV
Output High Voltage	VOH	IOH = 0 mA	1.25	1.375	1.6	V
Output Low Voltage	VOL	IOL = 0 mA	0.9	1.025	1.25	V
Offset Voltage	VOS		1.125	1.2	1.375	V

Table 27. LVDS I/O DC Characteristics

4.6.4 MLB I/O DC Parameters

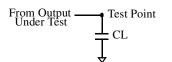
The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification version 4.1. See 6-pin differential MLB specification v4.1, "MediaLB 6-pin interface Electrical Characteristics" for details.

NOTE

The MLB 6-pin interface does not support speed mode 8192 fs.

Table 28 shows the Media Local Bus (MLB) I/O DC parameters.

Table 28. MLB I/O DC Characteristics


Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	VOD	Rload-50Ω Diff	300	500	mV
Output High Voltage	VOH	Rload-50Ω Diff	1.25	1.75	V
Output Low Voltage	VOL	Rload-50Ω Diff	0.75	1.25	V
Common-mode output voltage ((Vpadp*+Vpadn*)/2)	Vocm	Rload-50 Ω Diff	1	1.5	V
Differential output impedance	Zo		1.6		kΩ

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

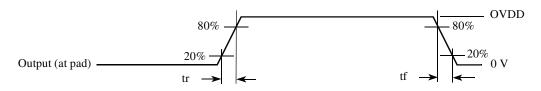


Figure 5. Output Transition Time Waveform

4.7.1 General Purpose I/O AC Parameters

The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=111)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	2.72/2.79 1.51/1.54	
Output Pad Transition Times, rise/fall (High Drive, ipp_dse=101)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.20/3.36 1.96/2.07	ns
Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=100)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	3.64/3.88 2.27/2.53	
Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=011)	tr, tf	15 pF Cload, slow slew rate 15 pF Cload, fast slew rate	_	_	4.32/4.50 3.16/3.17	
Input Transition Times ¹	trm	—	—	—	25	ns

Table 29. General Purpose I/O AC Parameters 1.8 V Mode

¹ Hysteresis mode is recommended for inputs with transition times greater than 25 ns.

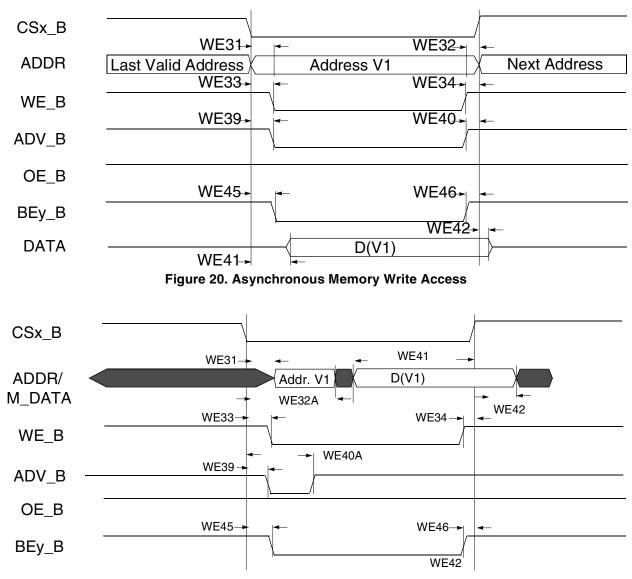


Figure 21. Asynchronous A/D Muxed Write Access

Figure 28 shows the write timing parameters. The timing parameters for this diagram appear in Table 49.



Figure 28. LPDDR2 Write Cycle

Table 49.	LPDDR2	Write	Cycle
-----------	--------	-------	-------

ID	Parameter	Symbol	CK = 400 MHz		Unit
			Min	Max	
LP17	DQ and DQM setup time to DQS (differential strobe)	tDS	375	—	ps
LP18	DQ and DQM hold time to DQS (differential strobe)	tdн	375	—	ps
LP21	DQS latching rising transitions to associated clock edges		-0.25	+0.25	tCK
LP22	DQS high level width	t DQSH	0.4	-	tCK
LP23	DQS low level width	tDQSL	0.4	-	tCK

¹ To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window.

² All measurements are in reference to Vref level.

 $^3\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

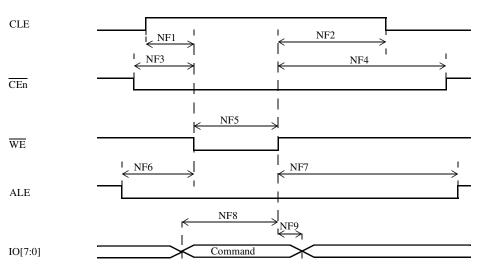


Figure 30. Command Latch Cycle Timing Diagram

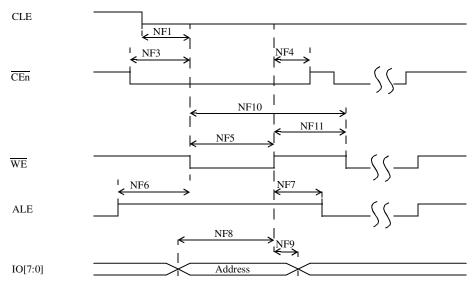


Figure 31. Address Latch Cycle Timing Diagram

4.10.3.2 Read and Write Timing

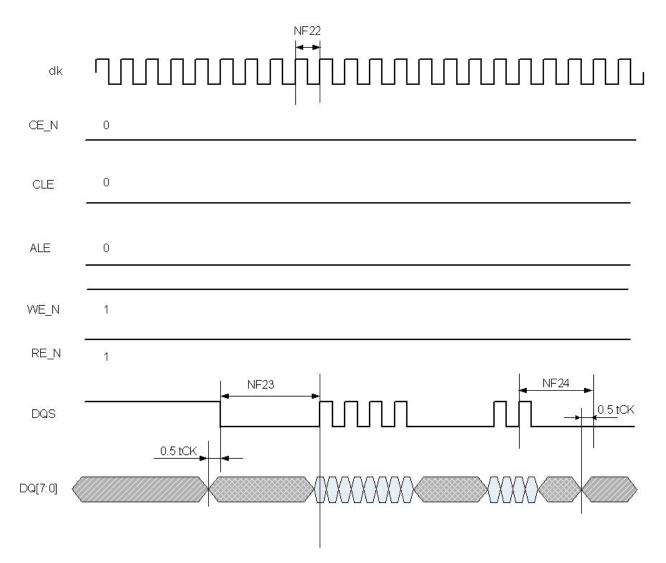


Figure 38. Samsung Toggle Mode Data Write Timing

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
81	SCKT rising edge to FST out (wr) low ⁵			_	22.0 12.0	x ck i ck	ns
82	SCKT rising edge to FST out (wl) high	—	—	_	19.0 9.0	x ck i ck	ns
83	SCKT rising edge to FST out (wl) low	—	—	_	20.0 10.0	x ck i ck	ns
84	SCKT rising edge to data out enable from high impedance	—		_	22.0 17.0	x ck i ck	ns
86	SCKT rising edge to data out valid	—		_	18.0 13.0	x ck i ck	ns
87	SCKT rising edge to data out high impedance ⁶⁷	—		_	21.0 16.0	x ck i ck	ns
89	FST input (bl, wr) setup time before SCKT falling edge ⁵	—	—	2.0 18.0	—	x ck i ck	ns
90	FST input (wl) setup time before SCKT falling edge	—		2.0 18.0	_	x ck i ck	ns
91	FST input hold time after SCKT falling edge			4.0 5.0		x ck i ck	ns
95	HCKR/HCKT clock cycle	—	2 x T _C	15		—	ns
96	HCKT input rising edge to SCKT output	—	—	—	18.0	—	ns
97	HCKR input rising edge to SCKR output	—	—	_	18.0	—	ns

Table 56. Enhanced Serial Audio Interface (ESAI) Timing (continued)

¹ i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that SCKT and SCKR are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that SCKT and SCKR are the same clock)

- ² bl = bit length
 - wl = word length

wr = word length relative

- ³ SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

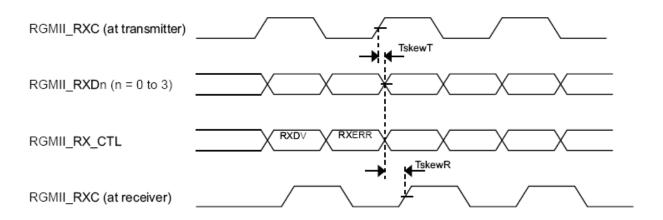


Figure 53. RGMII Receive Signal Timing Diagram Original

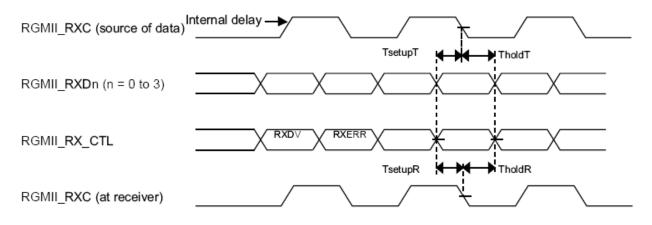


Figure 54. RGMII Receive Signal Timing Diagram with Internal Delay

4.11.6 Flexible Controller Area Network (FLEXCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* to see which pins expose Tx and Rx pins; these ports are named TXCAN and RXCAN, respectively.

4.11.7 HDMI Module Timing Parameters

4.11.7.1 Latencies and Timing Information

Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.

i.MX 6Solo/6DualLite		LCD						
	RGB,	R	GB/TV S	Signal A	llocation	(Examp	ole)	Comment ¹
Port Name (x=0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ²	16-bit YCrCb	20-bit YCrCb	
DISPx_DAT22	DAT[22]	—	_	R[6]	_	—	—	—
DISPx_DAT23	DAT[23]		_	R[7]	_	—	—	—
DIx_DISP_CLK				PixCLK				—
DIx_PIN1		_				May be required for anti-tearing		
DIx_PIN2		HSYNC						
DIx_PIN3		VSYNC			VSYNC out			
DIx_PIN4		—			Additional frame/row synchronous			
DIx_PIN5						signals with programmable timin		
DIx_PIN6		_						
DIx_PIN7		_						
DIx_PIN8								
Dlx_D0_CS		_			—			
DIx_D1_CS		_			Alternate mode of PWM contrast or brightness co			
DIx_PIN11						—		
DIx_PIN12								
DIx_PIN13	PIN13						Register select signal	
DIx_PIN14	_PIN14 —		_			Optional RS2		
DIx_PIN15			[DRDY/D	V			Data validation/blank, data enable
DIx_PIN16				_				Additional data synchronous
DIx_PIN17				Q				signals with programmable features/timing

Table 71. Video Signal Cross-Reference (continued)

¹ Signal mapping (both data and control/synchronization) is flexible. The table provides examples.

² This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.

V _{LEAK}	Input leakage current	VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode	-10	_	10	mA
V _{GNDSH}	Ground Shift		-50	—	50	mV
V _{OH(absmax)}	Maximum transient output voltage level		_	_	1.45	V
t _{voh(absmax)}	Maximum transient time above VOH(absmax)		—	—	20	ns
	HS Li	ne Drivers DC Specificatio	ns			
IV _{OD} I	HS Transmit Differential output voltage magnitude	80 Ω<= RL< = 125 Ω	140	200	270	mV
$\Delta V_{OD} $	Change in Differential output voltage magnitude between logic states	80 Ω<= RL< = 125 Ω			10	mV
V _{CMTX}	Steady-state common-mode output voltage.	80 Ω<= RL< = 125 Ω	150	200	250	mV
∆V _{CMTX} (1,0)	Changes in steady-state common-mode output voltage between logic states	80 Ω<= RL< = 125 Ω			5	mV
V _{OHHS}	HS output high voltage	80 Ω<= RL< = 125 Ω			360	mV
Z _{OS}	Single-ended output impedance.		40	50	62.5	Ω
ΔZ _{OS}	Single-ended output impedance mismatch.				10	%
	LP Li	ne Drivers DC Specificatio	ns			
V _{OL}	Output low-level SE voltage		-50		50	mV
V _{OH}	Output high-level SE voltage		1.1	1.2	1.3	V
Z _{OLP}	Single-ended output impedance.		110			Ω
ΔZ _{OLP(01-10)}	Single-ended output impedance mismatch driving opposite level				20	%
ΔZ _{OLP(0-11)}	Single-ended output impedance mismatch driving same level				5	%
	HS Lin	e Receiver DC Specification	ons			
V _{IDTH}	Differential input high voltage threshold				70	mV

Table 75. Electrical and Timing In	nformation (continued)
------------------------------------	------------------------

4.11.12.7 Forward High-Speed Data Transmission Timing

The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 75:

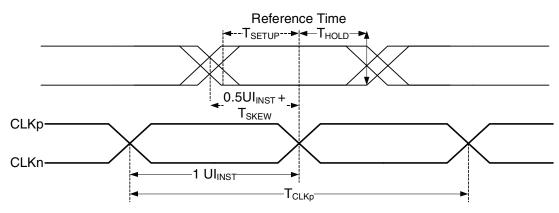


Figure 75. Data to Clock Timing Definitions

4.11.12.8 Reverse High-Speed Data Transmission Timing

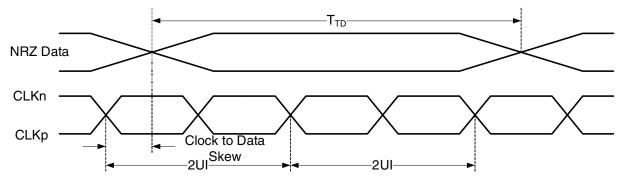


Figure 76. Reverse High-Speed Data Transmission Timing at Slave Side

4.11.12.9 Low-Power Receiver Timing

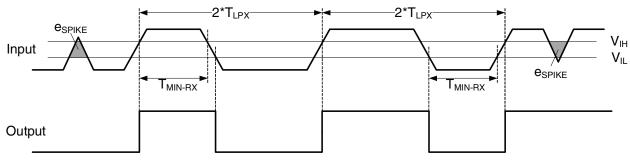
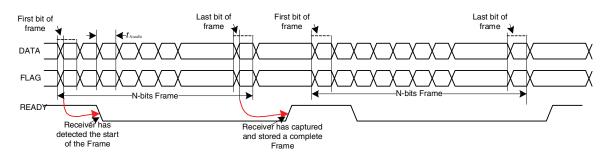
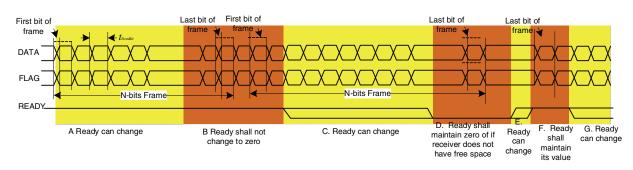



Figure 77. Input Glitch Rejection of Low-Power Receivers


4.11.13 HSI Host Controller Timing Parameters

This section describes the timing parameters of the HSI Host Controller which are compliant with High-speed Synchronous Serial Interface (HSI) Physical Layer specification version1.01.

4.11.13.1 Synchronous Data Flow

4.11.13.2 Pipelined Data Flow

4.11.13.3 Receiver Real-Time Data Flow

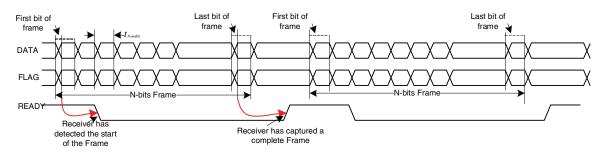


Figure 80. Receiver Real-Time Data Flow READY Signal Timing

4.11.21.2 Receive Timing

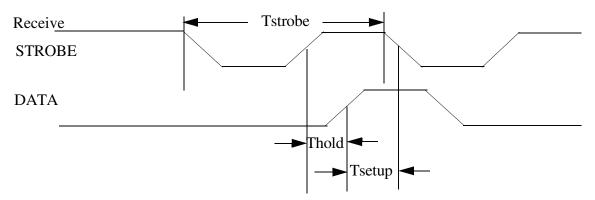


Figure 104. USB HSIC Receive Waveform

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Thold	data hold time	300		ps	Measured at 50% point
Tsetup	data setup time	365		ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.22 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

Package Information and Contact Assignments

				Out of Reset Condition ²				
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value	
EIM_EB1	K23	NVCC_EIM	GPIO	ALT0	weim.WEIM_EB[1]	Output	High	
EIM_EB2	E22	NVCC_EIM	GPIO	ALT5	gpio2.GPIO[30]	Input	100 kΩ pull-up	
EIM_EB3	F23	NVCC_EIM	GPIO	ALT5	gpio2.GPIO[31]	Input	100 kΩ pull-up	
EIM_LBA	K22	NVCC_EIM	GPIO	ALT0	weim.WEIM_LBA	Output	High	
EIM_OE	J24	NVCC_EIM	GPIO	ALT0	weim.WEIM_OE	Output	High	
EIM_RW	K20	NVCC_EIM	GPIO	ALT0	weim.WEIM_RW	Output	High	
EIM_WAIT	M25	NVCC_EIM	GPIO	ALT0	weim.WEIM_WAIT	Input	100 kΩ pull-up	
ENET_CRS_DV	U21	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[25]	Input	100 kΩ pull-up	
ENET_MDC	V20	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[31]	Input	100 kΩ pull-up	
ENET_MDIO	V23	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[22]	Input	100 kΩ pull-up	
ENET_REF_CLK	V22	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[23]	Input	100 kΩ pull-up	
ENET_RX_ER	W23	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[24]	Input	100 kΩ pull-up	
ENET_RXD0	W21	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[27]	Input	100 kΩ pull-up	
ENET_RXD1	W22	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[26]	Input	100 kΩ pull-up	
ENET_TX_EN	V21	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[28]	Input	100 kΩ pull-up	
ENET_TXD0	U20	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[30]	Input	100 kΩ pull-up	
ENET_TXD1	W20	NVCC_ENET	GPIO	ALT5	gpio1.GPIO[29]	Input	100 kΩ pull-up	
GPIO_0	T5	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[0]	Input	100 k Ω pull-down	
GPIO_1	T4	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[1]	Input	100 kΩ pull-up	
GPIO_16	R2	NVCC_GPIO	GPIO	ALT5	gpio7.GPIO[11]	Input	100 kΩ pull-up	
GPIO_17	R1	NVCC_GPIO	GPIO	ALT5	gpio7.GPIO[12]	Input	100 kΩ pull-up	
GPIO_18	P6	NVCC_GPIO	GPIO	ALT5	gpio7.GPIO[13]	Input	100 kΩ pull-up	
GPIO_19	P5	NVCC_GPIO	GPIO	ALT5	gpio4.GPIO[5]	Input	100 kΩ pull-up	
GPIO_2	T1	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[2]	Input	100 kΩ pull-up	
GPIO_3	R7	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[3]	Input	100 kΩ pull-up	
GPIO_4	R6	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[4]	Input	100 kΩ pull-up	
GPIO_5	R4	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[5]	Input	100 kΩ pull-up	
GPIO_6	ТЗ	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[6]	Input	100 kΩ pull-up	
GPIO_7	R3	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[7]	Input	100 kΩ pull-up	
GPIO_8	R5	NVCC_GPIO	GPIO	ALT5	gpio1.GPIO[8]	Input	100 kΩ pull-up	
		I	1		I		I	

Table 101. 21 x 21 mm Functional Contact Assignments¹ (continued)

~	8	>	Э	F	æ	٩	z
LVDS1_TX0_N	LVDS0_TX3_P	LVDS0_TX2_P	LVDS0_TX0_P	GPIO_2	GPI0_17	CSI0_PIXCLK	CSI0_DAT4
LVDS1_TX0_P	LVDS0_TX3_N	LVDS0_TX2_N	LVDS0_TX0_N	GPIO_9	GPIO_16	CSI0_DAT5	CSI0_VSYNC
LVDS1_CLK_N	GND	LVDS0_CLK_P	LVDS0_TX1_P	GPIO_6	GPIO_7	CSI0_DATA_EN	CSI0_DAT7
LVDS1_CLK_P	KEY_ROW2	LVDS0_CLK_N	LVDS0_TX1_N	GPI0_1	GPIO_5	CSI0_MCLK	CSI0_DAT6
GND	KEY_COL0	KEY_ROW4	KEY_COL3	GPIO_0	GPIO_8	GPIO_19	CSI0_DAT9
DRAM_RESET	KEY_COL2	KEY_ROW0	KEY_ROW1	KEY_COL4	GPIO_4	GPIO_18	CSI0_DAT8
DRAM_D20	GND	NVCC_LVDS2P5	KEY_COL1	KEY_ROW3	GPIO_3	NVCC_GPIO	NVCC_CSI
DRAM_D21	GND	GND	GND	GND	GND	GND	GND
DRAM_D19	GND	NVCC_DRAM	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_D25	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDSOC_CAP	GND	GND
DRAM_SDCKE0	GND	NVCC_DRAM	GND	GND	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A15	GND	NVCC_DRAM	GND	GND	GND	GND	NC
DRAM_A7	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_CAP	VDDARM_CAP	VDDARM_CAP
DRAM_A3	DRAM_A4	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP	VDDARM_IN	VDDARM_IN	VDDARM_IN
DRAM_SDBA1	GND	NVCC_DRAM	GND	GND	GND	GND	GND
DRAM_CS0	GND	NVCC_DRAM	VDDSOC_IN	VDDSOC_IN		VDDSOC_IN	VDDSOC_IN
DRAM_D36	GND	NVCC_DRAM	GND	GND	GND	VDDPU_CAP	VDDPU_CAP
DRAM_D37	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	GND	GND
DRAM_D40	GND	GND	GND	GND	NVCC_ENET	NVCC_LCD	DI0_DISP_CLK
DRAM_D44	ENET_TXD1	ENET_MDC	ENET_TXD0	DISP0_DAT21	DISP0_DAT13	DISP0_DAT4	DI0_PIN3
DRAM_DQM7	ENET_RXD0	ENET_TX_EN	ENET_CRS_DV	DISP0_DAT16	DISP0_DAT10	DISP0_DAT3	DI0_PIN15
DRAM_D59	ENET_RXD1	ENET_REF_CLK	DISP0_DAT20	DISP0_DAT15	DISP0_DAT8	DISP0_DAT1	EIM_BCLK
DRAM_D62	ENET_RX_ER	ENET_MDIO	DISP0_DAT19	DISP0_DAT11	DISP0_DAT6	DISP0_DAT2	EIM_DA14
GND	DISP0_DAT23	DISP0_DAT22	DISP0_DAT17	DISP0_DAT12	DISP0_DAT7	DISP0_DAT0	EIM_DA15
DRAM_D58	DRAM_D63	DISP0_DAT18	DISP0_DAT14	DISP0_DAT9	DISP0_DAT5	DI0_PIN4	DI0_PIN2
٨	×	>	D	F	æ	٩	z

Package Information and Contact Assignments

Table 103. 21 x 21 mm	, 0.8 mm Pitch	Ball Map	(continued)
-----------------------	----------------	----------	-------------