

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	DDR3, DDR3L, LPDDR2
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx6u1avm08ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

such as WLAN, BluetoothTM, GPS, hard drive, displays, and camera sensors.

The i.MX 6Solo/6DualLite processors are specifically useful for applications such as:

- Automotive navigation and entertainment
- Graphics rendering for Human Machine Interfaces (HMI)
- High-performance speech processing with large databases
- Audio playback
- Video processing and display

The i.MX 6Solo/6DualLite processors have some very exciting features, for example:

- Multilevel memory system—The multilevel memory system of each processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processors support many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNANDTM, and managed NAND, including eMMC up to rev 4.4.
- Smart speed technology—The processors have power management throughout the IC that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product, requiring levels of power far lower than industry expectations.
- Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices by scaling the voltage and frequency to optimize performance.
- Multimedia powerhouse—The multimedia performance of each processor is enhanced by a multilevel cache system, Neon MPE (Media Processor Engine) co-processor, a multi-standard hardware video codec, an image processing unit (IPU), and a programmable smart DMA (SDMA) controller.
- Powerful graphics acceleration—Each processor provides two independent, integrated graphics processing units: an OpenGL[®] ES 2.0 3D graphics accelerator with a shader and a 2D graphics accelerator.
- Interface flexibility—Each processor supports connections to a variety of interfaces: LCD controller for up to two displays (including parallel display, HDMI1.4, MIPI display, and LVDS display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces (such as UART, I²C, and I²S serial audio, and PCIe-II).
- Automotive environment support—Each processor includes interfaces, such as two CAN ports, an MLB150/50 port, an ESAI audio interface, and an asynchronous sample rate converter for multichannel/multisource audio.
- Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features will be discussed in detail in the *i.MX 6Solo/6DualLite Security Reference Manual* (to be released soon).

NOTE

The numbers in brackets indicate number of module instances. For example, PWM (4) indicates four separate PWM peripherals.

3 Modules List

The i.MX 6Solo/6DualLite processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order.

Block Mnemonic	Block Name	Subsystem	Brief Description
ARM	ARM Platform	ARM	The ARM Core Platform includes 1x (Solo) Cortex-A9 core for i.MX 6Solo and 2x (Dual) Cortex-A9 cores for i.MX 6DualLite. It also includes associated sub-blocks, such as the Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, watchdog, and CoreSight debug modules.
APBH-DMA	NAND Flash and BCH ECC DMA controller	System Control Peripherals	DMA controller used for GPMI2 operation
ASRC	Asynchronous Sample Rate Converter	Multimedia Peripherals	The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.
AUDMUX	Digital Audio Mux	Multimedia Peripherals	The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports.
BCH40	Binary-BCH ECC Processor	System Control Peripherals	The BCH40 module provides up to 40-bit ECC encryption/decryption for NAND Flash controller (GPMI)
CAAM	Cryptographic accelerator and assurance module	Security	CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6Solo/6DualLite processors, the security memory provided is 16 KB.

Table 2. i.MX 6Solo/6DualLite Modules List

Signal Name	Remarks
CSI_REXT	MIPI CSI PHY reference resistor. Use 6.04 K Ω 1% resistor connected between this pad and GND
DSI_REXT	MIPI DSI PHY reference resistor. Use 6.04 K Ω 1% resistor connected between this pad and GND

Table 3. Special Signal Considerations (continued)

Table 4. JTAG Controller Interface Summary

JTAG	I/О Туре	On-chip Termination
JTAG_TCK	Input	47 kΩ pull-up
JTAG_TMS	Input	47 kΩ pull-up
JTAG_TDI	Input	47 kΩ pull-up
JTAG_TDO	3-state output	Keeper
JTAG_TRSTB	Input	47 kΩ pull-up
JTAG_MOD	Input	100 kΩ pull-up

3.2 Recommended Connections for Unused Analog Interfaces

Table 5 shows the recommended connections for unused analog interfaces.

Table 5. Recommended Connections for Unused Analog Interfaces

Module	Pad Name	Recommendations if Unused?
ССМ	CLK1_N, CLK1_P, CLK2_N, CLK2_P	Float
CSI	CSI_CLK0M, CSI_CLK0P, CSI_D0M, CSI_D0P, CSI_D1M, CSI_D1P, CSI_REXT	Float
DSI	DSI_CLK0M, DSI_CLK0P, DSI_D0M, DSI_D0P, DSI_D1M, DSI_D1P, DSI_REXT	Float
HDMI	HDMI_CLKM, HDMI_CLKP, HDMI_D0M, HDMI_D0P, HDMI_D1M, HDMI_D1P, HDMI_D2M, HDMI_D2P, HDMI_DDCEC, HDMI_HPD, HDMI_REF	Float
	HDMI_VP, HDMI_VPH	Ground
LDB	LVDS0_CLK_N, LVDS0_CLK_P, LVDS0_TX0_N, LVDS0_TX0_P, LVDS0_TX1_N, LVDS0_TX1_P, LVDS0_TX2_N, LVDS0_TX2_P, LVDS0_TX3_N, LVDS0_TX3_P, LVDS1_CLK_N, LVDS1_CLK_P, LVDS1_TX0_N, LVDS1_TX0_P, LVDS1_TX1_N, LVDS1_TX1_P, LVDS1_TX2_N, LVDS1_TX2_P, LVDS1_TX3_N, LVDS1_TX3_P	Float
MLB	MLB_CN, MLB_CP, MLB_DN, MLB_DP, MLB_SN, MLB_SP	Float
PCle	PCIE_REXT, PCIE_RXM, PCIE_RXP, PCIE_TXM, PCIE_TXP	Float
	PCIE_VP, PCIE_VPH, PCIE_VPTX	Ground ¹
RGMII	RGMII_RD0, RGMII_RD1, RGMII_RD2, RGMII_RD3, RGMII_RX_CTL, RGMII_RXC, RGMII_TD0, RGMII_TD1, RGMII_TD2, RGMII_TD3, RGMII_TX_CTL, RGMII_TXC	Float
USB	USB_H1_DN, USB_H1_DP, USB_H1_VBUS, USB_OTG_CHD_B, USB_OTG_DN, USB_OTG_DP, USB_OTG_VBUS	Float

¹ In this case, the BSR chain will not work.

Power Line	Conditions	Max Current	Unit
NVCC_DRAM	—	4	
NVCC_ENET	N=10	Use maximal IO equation ⁵	
NVCC_LCD	N=29	Use maximal IO equation ⁵	
NVCC_GPIO	N=24	Use maximal IO equation ⁵	
NVCC_CSI	N=20	Use maximal IO equation ⁵	
NVCC_EIM	N=53	Use maximal IO equation ⁵	
NVCC_JTAG	N=6	Use maximal IO equation ⁵	
NVCC_RGMII	N=12	Use maximal IO equation ⁵	
NVCC_SD1	N=6	Use maximal IO equation ⁵	
NVCC_SD2	N=6	Use maximal IO equation ⁵	
NVCC_SD3	N=11	Use maximal IO equation ⁵	
NVCC_NANDF	N=26	Use maximal IO equation ⁵	
	MISC	•	
DDR_VREF	—	1	mA

Table 12. Maximal Supply Currents (continued)

¹ The actual maximum current drawn from VDDHIGH_IN will be as shown plus any additional current drawn from the VDDHIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

² The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.

³ This is the maximum current per active USB physical interface.

⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.

⁵ General equation for estimated, maximal power consumption of an IO power supply:

 $Imax = N \times C \times V \times (0.5 \times F)$

Where:

N-Number of IO pins supplied by the power line

C—Equivalent external capacitive load

V—IO voltage

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

- VDDARM_IN supply must be turned ON together with VDDSOC_IN supply or not delayed more than 1 ms
- VDDARM_CAP must not exceed VDDSOC_CAP by more than 50 mV.

NOTE

The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the *i.MX 6Solo/6DualLite Reference Manual* for further details and to ensure that all necessary requirements are being met.

NOTE

Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies).

NOTE

USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and may be powered at any time.

4.2.2 Power-Down Sequence

No special restrictions for i.MX 6Solo/6DualLite IC.

4.2.3 **Power Supplies Usage**

All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, "Package Information and Contact Assignments."

4.3 Integrated LDO Voltage Regulator Parameters

Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* for details on the power tree scheme.

NOTE

The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only.

4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)

There are three digital LDO regulators ("Digital", because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of

Figure 32. Write Data Latch Cycle Timing Diagram

ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Example 1 GPMI Clock T = 1	Fiming for $\approx 100~\text{MHz}$ IO ns	Unit
			Min.	Max.	Min.	Max.	
NF1	CLE setup time	tCLS	(AS+1) x T	_	10	—	ns
NF2	CLE hold time	tCLH	(DH+1) x T		20	—	ns
NF3	CEn setup time	tCS	(AS+1) x T	_	10	_	ns
NF4	CE hold time	tCH	(DH+1) x T		20	—	ns

Table 51. Asynchronous Mode Timing Parameters¹

i.MX 6Solo/6DualLite Automotive and Infotainment Applications Processors, Rev. 1

CLE

4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)

Figure 34 to Figure 36 show the write and read timing of Source Synchronous Mode.

Figure 34. Source Synchronous Mode Command and Address Timing Diagram

ID Parameter		Symbol	Tim T = GPMI C	Unit	
			Min.	Max.	
NF18	CE# access time	tCE	CE_DELAY x tCK	—	ns
NF19	CE# hold time	tCH	0.5 x tCK	—	ns
NF20	Command/address DQ setup time	tCAS	0.5 x tCK	—	ns
NF21	Command/address DQ hold time	tCAH	0.5 x tCK	—	ns
NF22	clock period	tCK	5		ns
NF23	preamble delay	tPRE	PRE_DELAY x tCK	—	ns
NF24	postamble delay	tPOST	POST_DELAY x tCK	—	ns
NF25	CLE and ALE setup time	tCALS	0.5 x tCK	—	ns
NF26	CLE and ALE hold time	tCALH	0.5 x tCK	—	ns
NF27	Data input to first DQS latching transition	tDQSS	tCK	_	ns

Table 52. Source Synchronous Mode Timing Parameters¹

¹ GPMI's Sync Mode output timing could be controlled by module's internal registers, say

 ${\sf HW_GPMI_TIMING2_CE_DELAY,\, HW_GPMI_TIMING_PREAMBLE_DELAY,\, and}$

HW_GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers' settings. In the above table, we use CE_DELAY/PRE_DELAY/POST_DELAY to represent each of these settings.

For DDR Source sync mode, Figure 37 shows the timing diagram of DQS/DQ read valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI will sample DQ[7:0] at both rising and falling edge of an delayed DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET(see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.10.3 Samsung Toggle Mode AC Timing

4.10.3.1 Command and Address Timing

NOTE

Samsung Toggle Mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.10.1, "Asynchronous Mode AC Timing (ONFI 1.0 Compatible)," for details.

ID	Parameter Syn		Min	Max	Unit	
	uSDHC Input / Card Outputs CMD, DAT (Reference to CLK)					
SD3	uSDHC Input Setup Time	t _{ISU}	2.6	—	ns	
SD4	uSDHC Input Hold Time	t _{IH}	1.5	—	ns	

Table 58. eMMC4.4 Interface Timing Specification (continued)

4.11.4.3 SDR50/SDR104 AC Timing

Figure 46 depicts the timing of SDR50/SDR104, and Table 59 lists the SDR50/SDR104 timing characteristics.

Figure 46. SDR50/SDR104 Timing

Table 59. SDR50/SDR104 Interface Timing Specification

ID	Parameter	Symbols	Min	Мах	Unit		
Card Input Clock							
SD1	Clock Frequency Period	t _{CLK}	4.8	_	ns		
SD2	Clock Low Time	t _{CL}	0.3*t _{CLK}	0.7*t _{CLK}	ns		
SD2	Clock High Time	t _{CH}	0.3*t _{CLK}	0.7*t _{CLK}	ns		
uSDHC Output/Card Inputs CMD, DAT in SDR50 (Reference to CLK)							
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns		
uSDHC Output/Card Inputs CMD, DAT in SDR104 (Reference to CLK)							
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns		
uSDHC Input/Card Outputs CMD, DAT in SDR50 (Reference to CLK)							
SD6	uSDHC Input Setup Time	t _{ISU}	2.5	_	ns		

ID	Parameter	Symbols	Min	Мах	Unit
SD7	uSDHC Input Hold Time	t _{IH}	1.5	—	ns
uSDHC Input/Card Outputs CMD, DAT in SDR104 (Reference to CLK) ¹					
SD8	Card Output Data Window	t _{ODW}	0.5*t _{CLK}	—	ns

Table 59. SDR50/SDR104 Interface Timing S	Specification ((continued)
---	-----------------	-------------

¹Data window in SDR100 mode is variable.

4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling

Signaling level of SD/eMMC4.3 and eMMC4.4 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 24, "GPIO DC Parameters," on page 38.

4.11.5 Ethernet Controller (ENET) AC Electrical Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

4.11.5.1 ENET MII Mode Timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 50 shows MII asynchronous input timings. Table 63 describes the timing parameters (M10–M15) shown in the figure.

Figure 50. MII Serial Management Channel Timing Diagram

Table	63.	MII	Serial	Management	Channel	Timing

ID	Characteristic	Min.	Max.	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	0	_	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	—	5	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	18	_	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	_	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

4.11.5.2 RMII Mode Timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the CRS_DV in RMII. Other signals under RMII mode include ENET_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET_RX_ER.

The maximal accuracy of UP/DOWN edge of IPP_DATA is:

Accuracy = $T_{diclk} \pm 0.62$ ns

The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are programmed through the registers.

Figure 70 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are set through the Register. Table 73 lists the synchronous display interface timing characteristics.

Figure 70. Synchronous Display Interface Timing Diagram—Access Level

ID	Parameter	Symbol	Min	Typ ¹	Мах	Unit
IP16	Display interface clock low time	Tckl	Tdicd-Tdicu-1.24	Tdicd ² -Tdicu ³	Tdicd-Tdicu+1.24	ns
IP17	Display interface clock high time	Tckh	Tdicp-Tdicd+Tdicu-1.24	Tdicp-Tdicd+Tdicu	Tdicp-Tdicd+Tdicu+1.2	ns
IP18	Data setup time	Tdsu	Tdicd-1.24	Tdicu	—	ns
IP19	Data holdup time	Tdhd	Tdicp-Tdicd-1.24	Tdicp-Tdicu	—	ns
IP20o	Control signals offset times (defines for each pin)	Tocsu	Tocsu-1.24	Tocsu	Tocsu+1.24	ns
IP20	Control signals setup time to display interface clock (defines for each pin)	Tcsu	Tdicd-1.24-Tocsu%Tdicp	Tdicu	_	ns

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

² Display interface clock down time

$$Tdicd = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_CLK_DOWN}{DI_CLK_PERIOD} \right] \right)$$

³ Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

 $Tdicu = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_CLK_UP}{DI_CLK_PERIOD} \right] \right)$

4.11.11 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits".

Parameter	Symbol	Test Condition	Min	Max	Units
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)	1.25	1.6	mV
Output Voltage Low	Vol	100 Ω differential load (0 V Diff—Output Low Voltage static)	0.9	1.25	mV
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.	1.15	1.375	V
VOS Differential	V _{OSDIFF}	Difference in V_{OS} between a One and a Zero state	-50	50	mV
Output short circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA
VT Full Load Test	VTLoad	100 Ω Differential load with a 3.74 k Ω load between GND and IO Supply Voltage	247	454	mV

Table 74. LVDS Display Bridge (LDB) Electrical Specification

4.11.12 MIPI D-PHY Timing Parameters

This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x2 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes).

4.11.12.1 Electrical and Timing Information

Symbol	Parameters	Test Conditions	MIN	ТҮР	МАХ	Unit
	Input DC Specificati	ons - Apply to CLKP/N and	DATAP/N	inputs		
VI	Input signal voltage range	Transient voltage range is limited from -300 mV to 1600 mV	-50	_	1350	mV

4.11.13.4 Synchronized Data Flow Transmission with Wake

Figure 81. Synchronized Data Flow Transmission with WAKE

4.11.13.5 Stream Transmission Mode Frame Transfer

Figure 82. Stream Transmission Mode Frame Transfer (Synchronized Data Flow)

4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)

Figure 83. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)

Figure 84. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)

4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load

Parameter	Description	1 Mbit/s	100 Mbit/s	200 Mbit/s
t _{Bit, nom}	Nominal bit time	1000 ns	10.0 ns	5.00 ns
t _{Rise, min} and ^t Fall, min	Minimum allowed rise and fall time	2.00 ns	2.00 ns	1.00 ns
^t TxToRxSkew, maxfq	Maximum skew between transmitter and receiver package pins	50.0 ns	0.5.0 ns	0.25 ns
t _{EageSepTx,} min	Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter.	400 ns	4.00 ns	2.00 ns
t _{EageSepRx,} min	Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver.	350 ns	3.5 ns	1.75 ns

Table 77. DATA and FLAG Timing

Figure 85. DATA and FLAG Signal Timing

Note:

- ¹ This case shows that the DATA signal has slowed down more compared to the FLAG signal
- ² This case shows that the FLAG signal has slowed down more compared to the DATA signal.

Figure 87. MLB 6-Pin Delay, Setup, and Hold Times

4.11.15 PCIe PHY Parameters

The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.

4.11.15.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.11.16 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 88 depicts the timing of the PWM, and Table 83 lists the PWM timing parameters.

4.11.20.2.1 UART Transmitter

Figure 99 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 92 lists the UART RS-232 serial mode transmit timing characteristics.

Figure 99. UART RS-232 Serial Mode Transmit Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} 1 - T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	_

Table 92. RS-232 Serial Mode Transmit Timing Parameters

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.11.20.2.2 UART Receiver

Figure 100 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 93 lists serial mode receive timing characteristics.

Figure 100. UART RS-232 Serial Mode Receive Timing Diagram

Table 93. RS-232 Serial Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² - 1/(16 x F _{baud_rate})	1/F _{baud_rate} + 1/(16 x F _{baud_rate})	

¹ The UART receiver can tolerate 1/(16 x F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x F_{baud_rate}).

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

4.11.21.2 Receive Timing

Figure 104. USB HSIC Receive Waveform

Table	97.	USB	HSIC	Receive	Parameters ¹
	••••				

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Thold	data hold time	300		ps	Measured at 50% point
Tsetup	data setup time	365		ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

4.11.22 USB PHY Parameters

This section describes the USB-OTG PHY and the USB Host port PHY parameters.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port).

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0

Package Information and Contact Assignments

					Out of Reset Con	dition ²	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Outpu t	Value
EIM_D19	G21	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[19]	Input	100 kΩ pull-up
EIM_D20	G20	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[20]	Input	100 k Ω pull-up
EIM_D21	H20	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[21]	Input	100 k Ω pull-up
EIM_D22	E23	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[22]	Input	100 k Ω pull-down
EIM_D23	D25	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[23]	Input	100 k Ω pull-up
EIM_D24	F22	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[24]	Input	100 k Ω pull-up
EIM_D25	G22	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[25]	Input	100 kΩ pull-up
EIM_D26	E24	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[26]	Input	100 kΩ pull-up
EIM_D27	E25	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[27]	Input	100 kΩ pull-up
EIM_D28	G23	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[28]	Input	100 kΩ pull-up
EIM_D29	J19	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[29]	Input	100 kΩ pull-up
EIM_D30	J20	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[30]	Input	100 kΩ pull-up
EIM_D31	H21	NVCC_EIM	GPIO	ALT5	gpio3.GPIO[31]	Input	100 k Ω pull-down
EIM_DA0	L20	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[0]	Input	100 kΩ pull-up
EIM_DA1	J25	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[1]	Input	100 kΩ pull-up
EIM_DA10	M22	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[10]	Input	100 k Ω pull-up
EIM_DA11	M20	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[11]	Input	100 kΩ pull-up
EIM_DA12	M24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[12]	Input	100 kΩ pull-up
EIM_DA13	M23	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[13]	Input	100 kΩ pull-up
EIM_DA14	N23	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[14]	Input	100 kΩ pull-up
EIM_DA15	N24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[15]	Input	100 kΩ pull-up
EIM_DA2	L21	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[2]	Input	100 kΩ pull-up
EIM_DA3	K24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[3]	Input	100 kΩ pull-up
EIM_DA4	L22	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[4]	Input	100 k Ω pull-up
EIM_DA5	L23	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[5]	Input	100 k Ω pull-up
EIM_DA6	K25	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[6]	Input	100 kΩ pull-up
EIM_DA7	L25	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[7]	Input	100 k Ω pull-up
EIM_DA8	L24	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[8]	Input	100 k Ω pull-up
EIM_DA9	M21	NVCC_EIM	GPIO	ALT0	weim.WEIM_DA_A[9]	Input	100 k Ω pull-up
EIM_EB0	K21	NVCC_EIM	GPIO	ALT0	weim.WEIM_EB[0]	Output	High

Table 101. 21 x 21 mm Functional Contact Assignments¹ (continued)

Package Information and Contact Assignments

	AE	AD	AC	AB	AA
-	GND	DRAM_D5	DRAM_D4	LVDS1_TX2_N	LVDS1_TX1_P
2	DRAM_D1	DRAM_D0	DRAM_VREF	LVDS1_TX2_P	LVDS1_TX1_N
e	DRAM_SDQS0	DRAM_SDQS0_B	DRAM_DQM0	GND	LVDS1_TX3_N
4	DRAM_D7	GND	DRAM_D2	DRAM_D6	LVDS1_TX3_P
S	DRAM_D9	DRAM_D8	DRAM_D13	DRAM_D12	DRAM_D3
9	DRAM_SDQS1_B	DRAM_SDQS1	DRAM_DQM1	DRAM_D14	DRAM_D10
2	DRAM_D11	GND	DRAM_D15	DRAM_D16	GND
œ	DRAM_SDQS2_B	DRAM_SDQS2	DRAM_D22	DRAM_DQM2	DRAM_D17
6	DRAM_D24	DRAM_D29	DRAM_D28	DRAM_D18	DRAM_D23
10	DRAM_DQM3	GND	DRAM_SDQS3	DRAM_SDQS3_B	GND
₽	DRAM_D26	DRAM_D30	DRAM_D31	DRAM_D27	DRAM_SDCKE1
12	DRAM_A9	DRAM_A12	DRAM_A11	DRAM_SDBA2	DRAM_A14
13	DRAM_A5	GND	DRAM_A6	DRAM_A8	GND
14	DRAM_SDCLK_1_B	DRAM_SDCLK_1	DRAM_A0	DRAM_A1	DRAM_A2
15	DRAM_SDCLK_0_B	DRAM_SDCLK_0	DRAM_SDBA0	DRAM_RAS	DRAM_A10
16	DRAM_CAS	GND	DRAM_SDODT0	DRAM_SDWE	GND
17	ZQPAD	DRAM_CS1	DRAM_A13	DRAM_SDODT1	DRAM_D32
18	DRAM_SDQS4_B	DRAM_SDQS4	DRAM_D34	DRAM_DQM4	DRAM_D33
19	DRAM_D35	GND	DRAM_D39	DRAM_D38	GND
20	DRAM_SDQS5_B	DRAM_SDQS5	DRAM_DQM5	DRAM_D41	DRAM_D45
21	DRAM_D46	DRAM_D43	DRAM_D47	DRAM_D42	DRAM_D57
22	DRAM_D49	GND	DRAM_D48	DRAM_D52	GND
23	DRAM_SDQS6_B	DRAM_SDQS6	DRAM_D53	DRAM_D60	DRAM_D61
24	DRAM_D50	DRAM_DQM6	DRAM_D51	GND	DRAM_SDQS7_B
25	GND	DRAM_D54	DRAM_D55	DRAM_D56	DRAM_SDQS7
	AE	AD	AC	AB	AA

Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)