

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6u1avm08abr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure.

1.1 Ordering Information

Table 1 shows the orderable part numbers covered by this datasheet. Table 1 does not include all possible orderable part numbers. The latest part numbers are available on the web page freescale.com/imx6series. If the desired part number is not listed in Table 1, or there may be any questions about available parts, see the web page freescale.com/imx6series or contact a Freescale representative.

Part Number	Solo/DualLite CPU	Options	Speed Grade	Temperature Grade	Package
MCIMX6U6AVM08AB	i.MX 6DualLite	With VPU, GPU, no EPD	800 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6U4AVM08AB	i.MX 6DualLite	With GPU, no VPU, no EPD	800 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6U1AVM08AB	i.MX 6DualLite	no GPU, no VPU, no display	800 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6S6AVM08AB	i.MX 6Solo	With VPU, GPU, no EPD	800 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6S4AVM08AB	i.MX 6Solo	With GPU, no VPU, no EPD	800 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, MAPBGA
MCIMX6S1AVM08AB	i.MX 6Solo	no GPU, no VPU, no display	800 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, MAPBGA

Table 1	. Orderable	Part	Numbers
	oraorabio		1101110010

Figure 1 describe the part number nomenclature so that the users can identify the characteristics of the specific part number they have (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which datasheet applies to a specific part is the temperature grade (junction) field.

- The i.MX 6Solo/6DualLite Automotive and Infotainment Applications Processors datasheet (IMX6SDLAEC) covers parts listed with an "A (Automotive temp)"
- The i.MX 6Solo/6DualLite Applications Processors for Consumer Products datasheet (IMX6SDLCEC) covers parts listed with a "D (Consumer temp)" or "E (Extended Consumer temp)"
- The i.MX 6Solo/6DualLite Applications Processors for Industrial Products datasheet (IMX6SDLIEC) covers parts listed with "C (Industrial temp)"

Ensure to have the proper datasheet for specific part by verifying the temperature grade (junction) field and matching it to the proper datasheet. If there will be any questions, visit see the web page freescale.com/imx6series or contact a Freescale representative for details.

- Two Controller Area Network (FlexCAN), 1 Mbps each
- Two Watchdog timers (WDOG)
- Audio MUX (AUDMUX)
- MLB (MediaLB) provides interface to MOST Networks (MOST25, MOST50, MOST150) with the option of DTCP cipher accelerator

The i.MX 6Solo/6DualLite processors integrate advanced power management unit and controllers:

- Provide PMU, including LDO supplies, for on-chip resources
- Use Temperature Sensor for monitoring the die temperature
- Support DVFS techniques for low power modes
- Use SW State Retention and Power Gating for ARM and MPE
- Support various levels of system power modes
- Use flexible clock gating control scheme

The i.MX 6Solo/6DualLite processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 6Solo/6DualLite processors incorporate the following hardware accelerators:

- VPU—Video Processing Unit
- IPUv3H—Image Processing Unit version 3H
- GPU3Dv5—3D Graphics Processing Unit (OpenGL ES 2.0) version 5
- GPU2Dv2—2D Graphics Processing Unit (BitBlt)
- ASRC—Asynchronous Sample Rate Converter

Security functions are enabled and accelerated by the following hardware:

- ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
- SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features.
- CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash engines, 16 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).
- SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
- CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy.
- A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.

NOTE

The actual feature set depends on the part numbers as described in Table 1, "Orderable Part Numbers," on page 3. Functions, such as video hardware acceleration, and 2D and 3D hardware graphics acceleration may not be enabled for specific part numbers.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
uSDHC-1 uSDHC-2 uSDHC-3 uSDHC-4	SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller	Connectivity Peripherals	 i.MX 6Solo/6DualLite specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.2/4.3/4.4 including high-capacity (size > 2 GB) cards HC MMC. Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDHC cards up to 32 GB. Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 All four ports support: 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) However, the SoC level integration and I/O muxing logic restrict the functionality to the following: Instances #1 and #2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with "Card detection" and "Write Protection" pads and do not support hardware reset. Instances #3 and #4 are primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports do not have "Card detection" and "Write Protection" pads and do support hardware reset. All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). Port #3 is placed in his own independent power domain and port #4 shares power domain with some other interfaces.
FlexCAN-1 FlexCAN-2	Flexible Controller Area Network	Connectivity Peripherals	The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.

Block Mnemonic	Block Name	Subsystem	Brief Description
512x8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Solo/6DualLite processors consist of 512x8-bit fuse fox accessible through OCOTP_CTRL interface.
GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7	General Purpose I/O Modules	System Control Peripherals	Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O.
GPMI	General Media Interface	Connectivity Peripherals	The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device.
GPT	General Purpose Timer	Timer Peripherals	Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.
GPU3Dv5	Graphics Processing Unit, ver.5	Multimedia Peripherals	The GPU3Dv5 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.1
GPU2Dv2	Graphics Processing Unit-2D, ver 2	Multimedia Peripherals	The GPU2Dv2 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
HDMI Tx	HDMI Tx i/f	Multimedia Peripherals	The HDMI module provides HDMI standard i/f port to an HDMI 1.4 compliant display.
HSI	MIPI HSI i/f	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.
² C-1 ² C-2 ² C-3 ² C-4	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
IOMUXC	IOMUX Control	System Control Peripherals	This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable.
IPUv3H	Image Processing Unit, ver.3H	Multimedia Peripherals	 IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: Parallel Interfaces for both display and camera Single/dual channel LVDS display interface HDMI transmitter MIPI/DSI transmitter MIPI/CSI-2 receiver The processing includes: Image conversions: resizing, rotation, inversion, and color space conversion A high-quality de-interlacing filter Video/graphics combining Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement Support for display backlight reduction
КРР	Key Pad Port	Connectivity Peripherals	 KPP Supports 8x8 external key pad matrix. KPP features are: Open drain design Glitch suppression circuit design Multiple keys detection Standby key press detection
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 6144 fs). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Supports 16/32-bit DDR3-800 (LV) or LPDDR2-800 in i.MX 6Solo Supports 16/32/64-bit DDR3-800 (LV) or LPDDR2-800 in i.MX 6DualLite Supports 2x32 LPDDR2-800 in i.MX 6DualLite Supports up to 4 GByte DDR memory space

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

4.1.7 USB PHY Current Consumption

4.1.7.1 Power Down Mode

In power down mode, everything is powered down, including the VBUS valid detectors in typical condition. Table 14 shows the USB interface current consumption in power down mode..

Table 14. USB PHY Current Consumption in Power Down Mode

	VDDUSB_CAP (3.0 V)	VDDHIGH_CAP (2.5 V)	NVCC_PLL_OUT (1.1 V)
Current	5.1 μΑ	1.7 μΑ	<0.5 µA

NOTE

The currents on the VDDHIGH_CAP and VDDUSB_CAP were identified to be the voltage divider circuits in the USB-specific level shifters.

4.1.8 PCIe 2.0 Power Consumption

Table 15 provides PCIe PHY currents under certain Tx operating modes.

Mode	Test Conditions	Supply	Max Current	Unit
PO: Normal Operation	5G Operations	PCIE_VP (1.1 V)	40	mA
		PCIE_VPTX (1.1 V)	20	
		PCIE_VPH (2.5 V)	21	
	2.5G Operations	PCIE_VP (1.1 V)	27	
		PCIE_VPTX (1.1 V)	20	
		PCIE_VPH (2.5 V)	20	
POs: Low Recovery Time	5G Operations	PCIE_VP (1.1 V)	30	mA
Latency, Power Saving State		PCIE_VPTX (1.1 V)	2.4	
		PCIE_VPH (2.5 V)	18	
	2.5G Operations	PCIE_VP (1.1 V)	20	
		PCIE_VPTX (1.1 V)	2.4	
		PCIE_VPH (2.5 V)	18	
P1: Longer Reocvery Time		PCIE_VP (1.1 V)	12	mA
Latency, Lower Power State		PCIE_VPTX (1.1 V)	2.4	
		PCIE_VPH (2.5 V)	12	
Power Down		PCIE_VP (1.1 V)	1.3	mA
		PCIE_VPTX (1.1 V)	0.18	
		PCIE_VPH (2.5 V)	0.36	

 Table 15. PCIe PHY Current Drain

4.5 On-Chip Oscillators

4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDDHIGH_IN such as the oscillator consumes power from VDDHIGH_IN when that supply is available and transitions to the back up battery when VDDHIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K will automatically switch to a crude internal ring oscillator. The frequency range of this block is approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.

The OSC32k runs from VDD_SNVS_CAP supply, which comes from the

VDDHIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDDHIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621:

- Average Discharge Voltage is 2.5 V
- Maximum Charge Current is 0.6 mA

For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k

	Min	Тур	Мах	Comments
Fosc		32.768 KHz		This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.
Current consumption		4 μΑ		The 4 μ A is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 μ A when ring oscillator is inactive, 20 μ A when the ring oscillator is running. Another 1.5 μ A is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 μ A on vdd_rtc when the ring oscillator is not running.

Table 23. OSC32K Main Characteristics

- ² To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
- ³ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.

4.6.2 DDR I/O DC Parameters

The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.

4.6.2.1 LPDDR2 Mode I/O DC Parameters

The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009.

Parameters	Symbol	Test Conditions	Min	Max	Unit
High-level output voltage	VOH	loh= -0.1mA	0.9*OVDD		V
Low-level output voltage	VOL	lol= 0.1mA		0.1*OVDD	V
Input Reference Voltage	Vref		0.49*OVDD	0.51*OVDD	V
DC High-Level input voltage	Vih_DC		Vref+0.13	OVDD	V
DC Low-Level input voltage	Vil_DC		OVSS	Vref-0.13	V
Differential Input Logic High	Vih_diff		0.26	Note ²	
Differential Input Logic Low	Vil_diff		Note ³	-0.26	
Pull-up/Pull-down Impedance Mismatch	Mmpupd		-15	15	%
240 Ω unit calibration resolution	Rres			10	Ω
Keeper Circuit Resistance	Rkeep		110	175	kΩ
Input current (no pull-up/down)	lin	VI = 0, VI = OVDD	-2.5	2.5	μA

Table 25. LPDDR2 I/O DC Electrical Parameters¹

¹ Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.

² The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot.

- 2. Calibration is done against 240 Ω external reference resistor.
- 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.8.4 MLB I/O Differential Output Impedance

Table 38 shows MLB I/O differential output impedance of the i.MX 6Solo/6DualLite processors.

Table 38. MLB I/O Differential Output Impedance

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Differential Output Impedance	Zo		1.6 K		_	Ω

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6Solo/6DualLite processor.

4.9.1 Reset Timings Parameters

Figure 10 shows the reset timing and Table 39 lists the timing parameters.

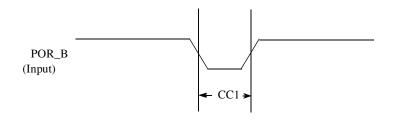


Figure 10. Reset Timing Diagram

Table 39. Reset	Timing	Parameters
-----------------	--------	------------

ID	Parameter	Min	Max	Unit
CC1	Duration of POR_B to be qualified as valid (input slope = 5 ns)	1		RTC_XTALI cycle

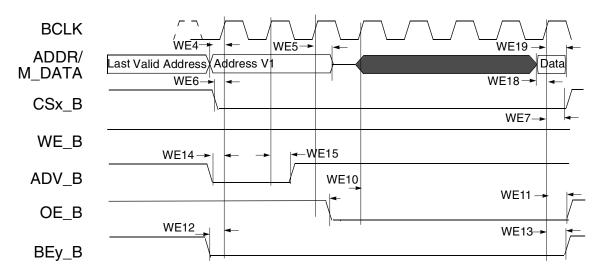


Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0

4.9.3.5 General EIM Timing-Asynchronous Mode

Figure 18 through Figure 22, and Table 44 help you determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN & CSN is configured differently. See the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* for the EIM programming model.

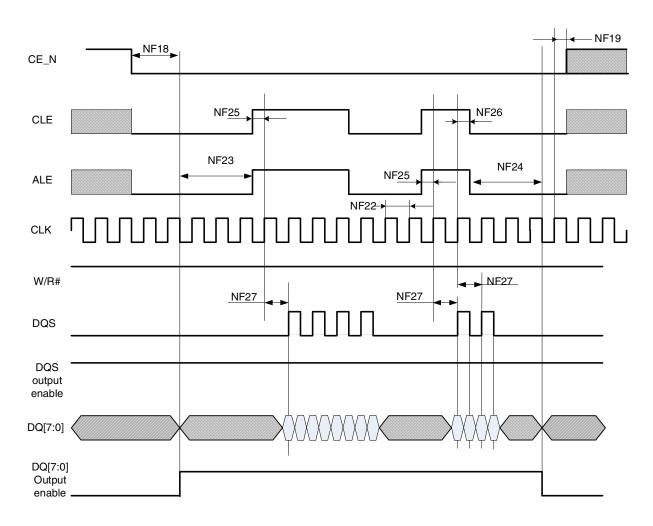


Figure 35. Source Synchronous Mode Data Write Timing Diagram

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
81	SCKT rising edge to FST out (wr) low ⁵			_	22.0 12.0	x ck i ck	ns
82	SCKT rising edge to FST out (wl) high	—	—	_	19.0 9.0	x ck i ck	ns
83	SCKT rising edge to FST out (wl) low	—	—	_	20.0 10.0	x ck i ck	ns
84	SCKT rising edge to data out enable from high impedance	—		_	22.0 17.0	x ck i ck	ns
86	SCKT rising edge to data out valid	—		_	18.0 13.0	x ck i ck	ns
87	SCKT rising edge to data out high impedance ⁶⁷	—		_	21.0 16.0	x ck i ck	ns
89	FST input (bl, wr) setup time before SCKT falling edge ⁵	—	—	2.0 18.0	—	x ck i ck	ns
90	FST input (wl) setup time before SCKT falling edge	—		2.0 18.0	_	x ck i ck	ns
91	FST input hold time after SCKT falling edge			4.0 5.0		x ck i ck	ns
95	HCKR/HCKT clock cycle	—	2 x T _C	15		—	ns
96	HCKT input rising edge to SCKT output	—	—	—	18.0	—	ns
97	HCKR input rising edge to SCKR output	—	—	_	18.0	—	ns

Table 56. Enhanced Serial Audio Interface (ESAI) Timing (continued)

¹ i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that SCKT and SCKR are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that SCKT and SCKR are the same clock)

- ² bl = bit length
 - wl = word length

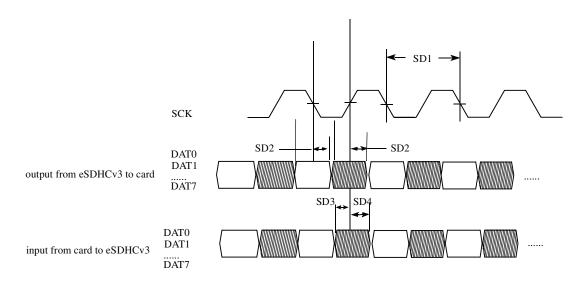
wr = word length relative

- ³ SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

ID	Parameter	Symbols	Min	Max	Unit		
uSDHC Input/Card Outputs CMD, DAT (Reference to CLK)							
SD7	uSDHC Input Setup Time	t _{ISU}	2.5	—	ns		
SD8	uSDHC Input Hold Time ⁴	t _{IH}	5.6	—	ns		

Table 57. SD/eMMC4.3 Interface Timing Specification (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.


² In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz.

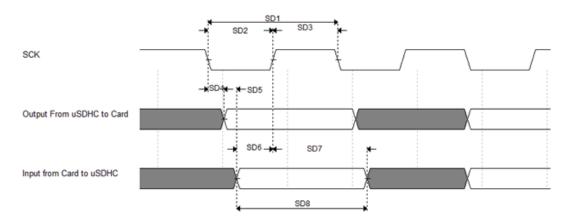
⁴To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.11.4.2 eMMC4.4 (Dual Data Rate) AC Timing

Figure 45 depicts the timing of eMMC4.4. Table 58 lists the eMMC4.4 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).

Figure 45. eMMC4.4 Timing

Table 58. eMMC4.4 Interface Timing Specification


ID	Parameter	Symbols	Min	Max	Unit		
Card Input Clock							
SD1	Clock Frequency (EMMC4.4 DDR)	f _{PP}	0	52	MHz		
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz		
	uSDHC Output / Card Inputs CMD, DAT (Reference to CLK)						
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns		

ID	Parameter Symbol		Min	Max	Unit		
uSDHC Input / Card Outputs CMD, DAT (Reference to CLK)							
SD3	uSDHC Input Setup Time	t _{ISU}	2.6	_	ns		
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns		

Table 58. eMMC4.4 Interface Timing Specification (continued)

4.11.4.3 SDR50/SDR104 AC Timing

Figure 46 depicts the timing of SDR50/SDR104, and Table 59 lists the SDR50/SDR104 timing characteristics.

Figure 46. SDR50/SDR104 Timing

Table 59. SDR50/SDR104 Interface Timing Specification

ID	Parameter	Symbols	Min	Мах	Unit		
Card Input Clock							
SD1	Clock Frequency Period	t _{CLK}	4.8	_	ns		
SD2	Clock Low Time	t _{CL}	0.3*t _{CLK}	0.7*t _{CLK}	ns		
SD2	Clock High Time	t _{CH}	0.3*t _{CLK}	0.7*t _{CLK}	ns		
	uSDHC Output/Card Inputs C	CMD, DAT in SDF	850 (Reference	e to CLK)	·		
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns		
	uSDHC Output/Card Inputs C	MD, DAT in SDR	104 (Referenc	e to CLK)			
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns		
	uSDHC Input/Card Outputs CMD, DAT in SDR50 (Reference to CLK)						
SD6	uSDHC Input Setup Time	t _{ISU}	2.5	—	ns		

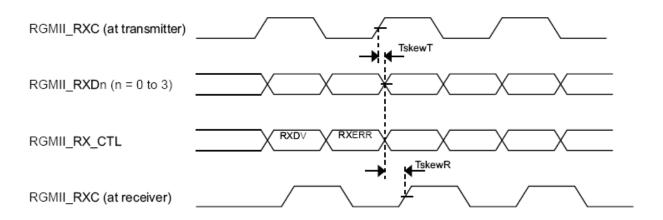


Figure 53. RGMII Receive Signal Timing Diagram Original

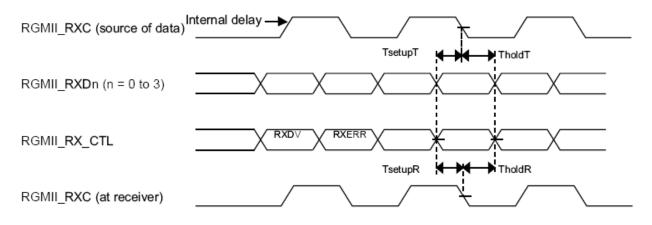


Figure 54. RGMII Receive Signal Timing Diagram with Internal Delay

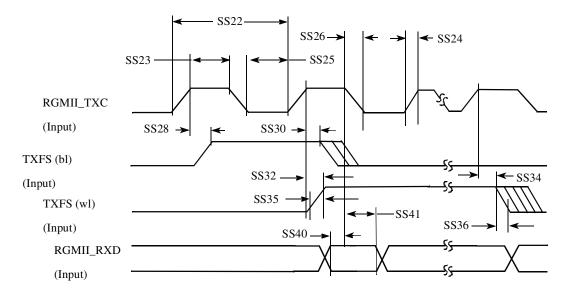
4.11.6 Flexible Controller Area Network (FLEXCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* to see which pins expose Tx and Rx pins; these ports are named TXCAN and RXCAN, respectively.

4.11.7 HDMI Module Timing Parameters

4.11.7.1 Latencies and Timing Information

Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.


Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	I	Operating conditions for HD	MI		L L	
avddtmds	Termination supply voltage	-	3.15	3.3	3.45	V
R _T	Termination resistance	-	45	50	55	Ω
		TMDS drivers DC specification	ons			
V_{OFF} Single-ended standby voltage RT = 50 Ω avddtmds ± 10 mV					mV	
V _{SWING}	Single-ended output swing voltage	For measurement conditions and definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	-	600	mV
V _H	Single-ended output high voltage	If attached sink supports TMDSCLK < or = 165 MHz	avo	ldtmds ± 10	mV	mV
For definition, see the second figure above	If attached sink supports TMDSCLK > 165 MHz	avddtmds - 200 mV	-	avddtmds + 10 mV	mV	
VL	voltage	If attached sink supports TMDSCLK < or = 165 MHz	avddtmds - 600 mV	-	avddtmds - 400mV	mV
	For definition, see the second figure above	If attached sink supports TMDSCLK > 165 MHz	avddtmds - 700 mV	-	avddtmds - 400 mV	mV
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.	-	50	-	200	Ω
		Hot plug detect specificatio	ns		. I	
HPD ^{VH}	Hot plug detect high range	-	2.0	-	5.3	V
VHPD VL	Hot plug detect low range	-	0	-	0.8	V
HPD	Hot plug detect input impedance	-	10	-	-	kΩ
HPD	Hot plug detect time delay	-	-	-	100	μs

4.11.8 Switching Characteristics

Table 67 describes switching characteristics for the HDMI 3D Tx PHY. Figure 58 to Figure 62 illustrate various parameters specified in table.

4.11.19.4 SSI Receiver Timing with External Clock

Figure 98 depicts the SSI receiver external clock timing and Table 90 lists the timing parameters for the receiver timing with the external clock.

Figure 98. SSI Receiver External Clock Timing Diagram

ID	Parameter	Min	Max	Unit				
	External Clock Operation							
SS22	(Tx/Rx) CK clock period	81.4	—	ns				
SS23	(Tx/Rx) CK clock high period	36	—	ns				
SS24	(Tx/Rx) CK clock rise time	—	6.0	ns				
SS25	(Tx/Rx) CK clock low period	36	—	ns				
SS26	(Tx/Rx) CK clock fall time	—	6.0	ns				
SS28	(Rx) CK high to FS (bl) high	-10	15.0	ns				
SS30	(Rx) CK high to FS (bl) low	10	—	ns				
SS32	(Rx) CK high to FS (wl) high	-10	15.0	ns				
SS34	(Rx) CK high to FS (wl) low	10	—	ns				
SS35	(Tx/Rx) External FS rise time	—	6.0	ns				
SS36	(Tx/Rx) External FS fall time	—	6.0	ns				
SS40	SRXD setup time before (Rx) CK low	10	—	ns				
SS41	SRXD hold time after (Rx) CK low	2	—	ns				

Table 90. SSI Receiver Timing with External Clock

4.11.20.2.1 UART Transmitter

Figure 99 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 92 lists the UART RS-232 serial mode transmit timing characteristics.

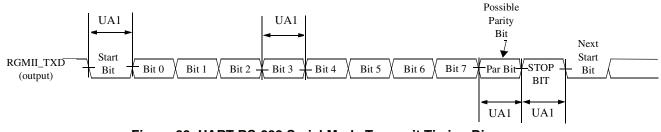


Figure 99. UART RS-232 Serial Mode Transmit Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} 1 - T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	_

Table 92. RS-232 Serial Mode Transmit Timing Parameters

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.11.20.2.2 UART Receiver

Figure 100 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 93 lists serial mode receive timing characteristics.

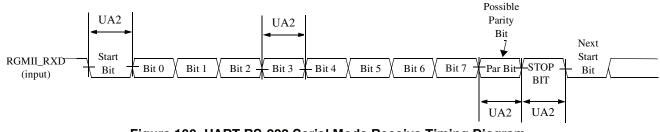


Figure 100. UART RS-232 Serial Mode Receive Timing Diagram

Table 93. RS-232 Serial Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² - 1/(16 x F _{baud_rate})	1/F _{baud_rate} + 1/(16 x F _{baud_rate})	—

¹ The UART receiver can tolerate 1/(16 x F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x F_{baud_rate}).

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

Package Information and Contact Assignments

AC	AB	AA	7	8	>	5	F
DRAM_D4	LVDS1_TX2_N	LVDS1_TX1_P	LVDS1_TX0_N	LVDS0_TX3_P	LVDS0_TX2_P	LVDS0_TX0_P	GPIO_2
DRAM_VREF	LVDS1_TX2_P	LVDS1_TX1_N	LVDS1_TX0_P	LVDS0_TX3_N	LVDS0_TX2_N	LVDS0_TX0_N	GPIO_9
DRAM_DQM0	GND	LVDS1_TX3_N	LVDS1_CLK_N	GND	LVDS0_CLK_P	LVDS0_TX1_P	GPIO_6
DRAM_D2	DRAM_D6	LVDS1_TX3_P	LVDS1_CLK_P	KEY_ROW2	LVDS0_CLK_N	LVDS0_TX1_N	GPIO_1
DRAM_D13	DRAM_D12	DRAM_D3	GND	KEY_COL0	KEY_ROW4	KEY_COL3	GPIO_0
DRAM_DQM1	DRAM_D14	DRAM_D10	DRAM_RESET	KEY_COL2	KEY_ROW0	KEY_ROW1	KEY_COL4
DRAM_D15	DRAM_D16	GND	DRAM_D20	GND	NVCC_LVDS2P5	KEY_COL1	KEY_ROW3
DRAM_D22	DRAM_DQM2	DRAM_D17	DRAM_D21	GND	GND	GND	GND
DRAM_D28	DRAM_D18	DRAM_D23	DRAM_D19	GND	NVCC_DRAM	VDDARM_IN	VDDARM_IN
DRAM_SDQS3	DRAM_SDQS3_B	GND	DRAM_D25	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP
DRAM_D31	DRAM_D27	DRAM_SDCKE1	DRAM_SDCKE0	GND	NVCC_DRAM	GND	GND
DRAM_A11	DRAM_SDBA2	DRAM_A14	DRAM_A15	GND	NVCC_DRAM	GND	GND
DRAM_A6	DRAM_A8	GND	DRAM_A7	GND	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP
DRAM_A0	DRAM_A1	DRAM_A2	DRAM_A3	DRAM_A4	NVCC_DRAM	VDDSOC_CAP	VDDSOC_CAP
DRAM_SDBA0	DRAM_RAS	DRAM_A10	DRAM_SDBA1	GND	NVCC_DRAM	GND	GND
DRAM_SDODT0	DRAM_SDWE	GND	DRAM_CS0	GND	NVCC_DRAM	VDDSOC_IN	VDDSOC_IN
DRAM_A13	DRAM_SDODT1	NC	NC	GND	NVCC_DRAM	GND	GND
Ŋ	NC	NC	NC	GND	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM
N	NC	GND	NC	GND	GND	GND	GND
N	NC	NC	Ŋ	ENET_TXD1	ENET_MDC	ENET_TXD0	DISP0_DAT21
N	NC	NC	NC	ENET_RXD0	ENET_TX_EN	ENET_CRS_DV	DISP0_DAT16
N	NC	GND	NC	ENET_RXD1	ENET_REF_CLK	DISP0_DAT20	DISP0_DAT15
NC	NC	NC	Q	ENET_RX_ER	ENET_MDIO	DISP0_DAT19	DISP0_DAT11
S	GND	NC	GND	DISP0_DAT23	DISP0_DAT22	DISP0_DAT17	DISP0_DAT12
NC	NC	NC	NC	NC	DISP0_DAT18	DISP0_DAT14	DISP0_DAT9
AC	AB	AA	٨	Ν	>	D	F

Table 102. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

Package Information and Contact Assignments

	AE	AD
-	GND	DRAM_D5
2	DRAM_D1	DRAM_D0
e	DRAM_SDQS0	DRAM_SDQS0_B
4	DRAM_D7	GND
5	DRAM_D9	DRAM_D8
9	DRAM_SDQS1_B	DRAM_SDQS1
7	DRAM_D11	GND
8	DRAM_SDQS2_B	DRAM_SDQS2
6	DRAM_D24	DRAM_D29
10	DRAM_DQM3	GND
11	DRAM_D26	DRAM_D30
12	DRAM_A9	DRAM_A12
13	DRAM_A5	GND
14	DRAM_SDCLK_1_B	DRAM_SDCLK_1
15	DRAM_SDCLK_0_B	DRAM_SDCLK_0
16	DRAM_CAS	GND
17	ZQPAD	DRAM_CS1
18	NC	NC
19	NC	GND
20	NC	NC
21	NC	NC
22	NC	GND
23	NC	NC
24	NC	NC
25	GND	NC
	AE	AD

Table 102. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

Table 103 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6DualLite.

Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map

	-	2	e	4	ß	9	~	8	6	10	÷	12	13	4	15	16	17	18	19	20	21	52	23	24	25	
	-			~	47	.		~	0,	-	-	-	-	-	-	-	-	-	-	2	2	5	3	Ñ	3	<u> </u>
٩	NC	PCIE_REXT	PCIE_TXM	GND	FA_ANA	USB_OTG_DP	XTALI	GND	MLB_SN	MLB_DP	MLB_CN	NC	GND	NC	SD3_DAT2	NANDF_ALE	NANDF_CS2	NANDF_D0	NANDF_D4	SD4_DAT3	SD1_DAT0	SD2_DAT0	SD2_DAT2	RGMII_TD3	GND	A
ß	PCIE_RXM	PCIE_RXP	PCIE_TXP	GND	VDD_FA	USB_OTG_DN	XTALO	USB_OTG_CHD_B	MLB_SP	MLB_DN	MLB_CP	NC	SD3_CMD	NC	SD3_DAT3	NANDF_RB0	SD4_CMD	NANDF_D5	SD4_DAT1	SD4_DAT6	SD1_CMD	SD2_DAT3	RGMII_RD1	RGMII_RD2	RGMII_RXC	B
U	GND	JTAG_TRSTB	JTAG_TMS	GND	CLK2_N	GND	CLK1_N	GPANAIO	RTC_XTALO	GND	POR_B	BOOT_MODE0	SD3_DAT5	NC	NANDF_CLE	NANDF_CS1	NANDF_D1	NANDF_D7	SD4_DAT5	SD1_DAT1	SD2_CLK	RGMII_TD0	RGMII_TX_CTL	RGMII_RD0	EIM_D16	U
٥	CSI_D1M	CSI_D1P	GND	CSI_REXT	CLK2_P	GND	CLK1_P	GND	RTC_XTALI	USB_H1_VBUS	PMIC_ON_REQ	ONOFF	SD3_DAT4	SD3_CLK	SD3_RST	NANDF_CS3	NANDF_D3	SD4_DAT0	SD4_DAT7	SD1_CLK	RGMII_TXC	RGMII_RX_CTL	RGMII_RD3	EIM_D18	EIM_D23	D